
Annual Research Briefs - 1994

Center for Turbulence Research

/

December 1994

Ames Research Center Stanford U_ ......





CONTENTS

Preface

Conditional statistics in a turbulent premixed flame derived from di-
rect numerical simulation. T. MANTEL and It. W. BILGER

Lewis number and DamkShler number effects in vortex-flame interac-

tions. J.-M. SAMAN[EGO

Fundamental mechanisms in premixed flame propagation via vortex-
flame interactions - numerical simulations. T. MANTEL

Triple flames and flame stabilization. J. E. BROADWELL

Flame propagation under partially-premixed conditions.
G. It. RUETSCH

Turbulence modeling for separated flow. P. A. DURBIN

Notes on rotating turbulence. O. ZEMAN

A dynamic localization model with stochastic backscatter. D. CARATI
and S. GHOSAL

Large-eddy simulation of a plane wake. S. GHOSAL and M. ROGERS

Local dynamic subgrid-scale models in channel flow. W. CABOT

Unstructured-grid large-eddy simulation of flow over an airfoil.
KENNETH JANSEN

Large-eddy simulation of flow through a plane, asymmetric diffuser.
HANS-JAKOB KALTENBACH

Large-eddy simulation of a boundary layer with concave stream-wise
curvature. T. S. LUND

Experimental investigations of "on-demand" vortex generators.
SEYED G. SADDOUGHI

Direct numerical simulations of "on-demand" vortex generators --
break Mathematical formulation. P. KOUMOUTSAKOS

Drag reduction strategies. D. C. HILL

Optimal active control for Burgers equation. YUTAKA IKEDA

Acoustics of laminar boundary layer breakdown. MENG WANG

Small-scale behavior in distorted turbulent boundary layers at low

Reynolds number. SEYED G. SADDOUGHI

Transverse vorticity measurements in the NASA Ames 80 ft × 120 ft

wind tunnel boundary layer. J. F. Foss, D. G. BOHL,

F. D. BRAMKAMP, and J. G. KLEWICKI

iii
k.

29

45

77

79

97

107

115

127

143

161

175

185

197

205

215

219

225

243

263



Experimentaland numericalstudyof the intermittency exponent/_.
ALEXANDER PRASKOVSKY

On the dynamics of small-scale vorticity in isotropic turbulence.
J. JIMENEZ and A. A. WRAY

Forced free-shear layer measurements. R. L. LEBOEUF

Numerical study of boundary layer interaction with shocks - method
and code validation. N. A. ADAMS

Resolution requirements for velocity gradients in turbulence.
J. JIMI_NEZ

A method for obtaining a statistically stationary turbulent free shear
flow. S. F. TIMSON, S. K. LELE and R. D. MOSER

Direct numerical simulation of incompressible axisymmetric flows.
PATRICK LOULOU

Database post-processing in Tensoral. ELIOT DRESSELHAUS

Appendix: Center for Turbulence Research 1994 Roster

269

287

313

339

357

365

373

379

391

_v



Center for Turbulence Research 1
Annual Research Briefs 1994

Preface

This report contains the 1994 annual progress reports of the Research Fellows and

students of the Center for Turbulence Research. A separate report documenting the

findings from the fifth CTR Summer Program was published earlier this year.

Since its inception in 1987, the objective of the Center for Turbulence Research

has been to advance the physical understanding of turbulence in order to develop

fundamentally-based predictive methods for engineering analysis and techniques for

turbulence control. We believe that the pacing item for turbulence modeling and

control is new fundamental ideas, which must be motivated by engineering applica-

tions. CTR strives to create an environment conducive to generation of new ideas,

and this has been the guiding principle in the appointment of the CTR Fellows. In

the past eight years, CTR has been able to attract over two hundred very bright

postdoctoral researchers and established experts in turbulence and related fields

for research, for the Summer Programs, and for other technical exchanges. From

their research and interactions between them, a number of important new ideas for

turbulence modeling and simulation have emerged, and several have already been

implemented in engineering codes. CTR contributions include new models for com-

pressibility effects in high-speed flows, the elliptic relaxation method for treatment

of flow inhomogeneities and solid boundaries, the dynamic subgrid-scale model-

ing approach for large-eddy simulation, structure-based turbulence modeling, new

methods for computation of aerodynamic sound, and new insights into the physics

and modeling of chemically reacting turbulence obtained through a combination of

experiments and direct numerical simulations.

Last year CTR hosted thirteen resident Postdoctoral Fellows, three Research

Associates, and five Senior Research Fellows, and it supported two doctoral students

and four short-term visitors. In addition, CTR sponsored its fifth Summer Program

in July 1994 with thirty participants. The major portion of Stanford's doctoral

research program in turbulence is sponsored by the United States Air Force Office

of Scientific Research and the Office of Naval Research. Many students supported

by these programs also conduct their research at the CTR. This report includes

work only for those students who were directly supported by the CTR.

The first group of reports in this volume are directed towards turbulence com-

bustion. A notable progress in this area was the successful completion of an experi-

mental and numerical study designed for validation of simple chemical mechanisms

for prediction codes. The second and the largest group of reports are concerned

with the prediction of turbulent flows. A significant fraction of CTR's effort in

large-eddy simulation and Reynolds-averaged turbulence modeling was focused on

the application of models developed at the CTR to complex, unsteady separated

flows. The remaining articles are devoted to experimental and numerical studies

of turbulence control, physics of turbulence and sound generation, and simulation

techniques. The last report is on the advanced postprocessing project, which has



now produced functioning software for the analysis of the database of numerical
simulations of turbulence.

The CTR roster for 1994 is provided in the Appendix. Also listed are the members

of the Advisory Committee, which meets annually to review the Center's program,
and the Steering Committee, which acts on Fellowship applications.

It is a great pleasure to thank Debra Spinks, the Center's Administrative Assis-

tant, for her skillful compilation of this report.
Parviz Moin

William C. Reynolds
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Conditional statistics in a turbulent premixed
flame derived from direct numerical simulation

By T. Mantel 8: R. W. Bilger I

1. Motivation and objectives

In premixed turbulent combustion modeling, the most common approach is based
on averaged transport equations for statistical moments (mean, variance) of thermo-

chemical variables. Most of the recent developments are for systems in the flamelet

regime and consider infinitely fast chemical reactions compared to the turbulent

mixing (Bray 1980, Peters 1986). Under this assumption, the turbulent flame can

be represented as a collection of laminar flamelets stretched and convected by the
turbulent flow field. Thus, several authors have proposed to describe the turbu-

lent flame by a transport equation for the surface flame area per unit of volume

(Bideanx et al. 1994, Candel & Poinsot 1990, Pope 1985-a, Trouv_ & Poinsot 1994)

or by a transport equation for an arbitrary scalar field (concentration, temperature)

G(zk, t) = Go which describes the flame sheet as an infinitely thin interface sepa-
rating fresh and burnt gases (Kerstein et al. 1988, Peters 1992, Williams 1985-b).

Another possibility is to derive a transport equation for the dissipation of the fluc-

tuations of the concentration leading, in the limit of high Damk6hler number, to a

balance equation for E (Mantel & Borghi 1994).

Another general approach consists of directly calculating the probability den-

sity function (pdf) of the thermochemical variables through its transport equation

(Borghi 1988, O'Brien 1985, Pope 1985-b). This method avoids the modeling of
the chemical reaction rate and can more easily take into account reduced chemical

schemes or complete chemical schemes as well (Vervisch 1991). However, the lim-
itation of these models is the high computational cost of the Monte-Carlo method

used and the sub-models for the molecular mixing terms.

Recently, Bilger (1993-a,b) has proposed an alternative method based on con-
ditional moment closure (CMC) applied to turbulent reacting flows for both non-

premixed and premixed systems. This technique goes beyond the zone condition-

ing methods developed and applied to non reacting flows in the case of a two-
dimensional mixing layer by Libby (1975) and extended to the turbulent mixing

of scalars by Dopazo (1977). Like pdf approaches, the CMC method is valid in

the different regimes of combustion and can take into account reduced or complete

chemical schemes. Moreover, the chemical reaction term can be decomposed using a

Taylor expansion (Bilger 1993-b) and can be estimated without modeling. Although

CMC methods in turbulent reacting flows are of recent origin and still under de-
velopment, applications to real configurations for non-premixed combustion have

1 University of Sydney, Australia



4 T. Mantel ¢J R. IV. Bilger

been already performed using detailed chemistry (Smith et al. 1992). Comparisons

with experimental data obtained for a turbulent jet-flame show encouraging results

(Smith et al. 1993). As in classical flamelet models (Bray 1980), the dissipation

rate of a conserved scalar appears in the CMC approach and is a crucial quantity
which must be modeled. To validate models for the conditional dissipation rate,

Mell et al. (1994) use results from direct numerical simulation of a reacting mixture
in homogeneous turbulence whereas Li & Bilger (1993) utilize experimental results

in a reactive scalar mixing layer. Conditional statistics concerning the dissipation

of temperature fluctuations in a non-reacting system are also available (Jayesh &

Warhaft 1992).

Nevertheless, for premixed systems only theoretical developments exist (Bilger

1993-b) and certain problems are still unresolved. This is particularly the case for
the conditional mean velocity and the conditional mean scalar dissipation rate. This

last term characterizes the molecular mixing (or the rate of dissipation of the scalar

fluctuations) and must be treated carefully in turbulent premixed combustion as
has been shown in Borghi (1990) and Mantel & Borghi (1994).

But, unlike diffusion times, scalar dissipation is a quantity difficult to measure

in premixed flames because of the weak spatial resolution of experimental devices

(Bilger 1993-c). Experimental results for the scalar dissipation have not yet been
published. Since for premixed systems no data are available, another possibility

consists of analyzing results of DNS of turbulent premixed flames. Among the

available databases, we cite the pioneering work of Trouv6 & Poinsot (1994) who
have simulated the interaction between a premixed flame and a three-dimensional

isotropic decaying turbulent flow field with realistic heat release. The analysis of

these numerical results will provide new information concerning the conditional

statistics in turbulent premixed flames and eventually lead to new models for these
unclosed terms.

The objective of this paper is to briefly introduce CMC methods for premixed sys-

tems and to derive the transport equation for the conditional species mass fraction

conditioned on the progress variable based on the enthalpy. Our statistical analy-
sis will be based on the 3-D DNS database of Trouv6 & Poinsot (1994) available
at the Center for Turbulence Research. The initial conditions and characteristics

(turbulence, thermo-diffusive properties) as well as the numerical method utilized
in the DNS of Trouv6 & Poinsot (1994) are presented, and some details concern-

ing our statistical analysis are also given. From the analysis of DNS results, the
effects of the position in the flame brush, of the DamkShler and Lewis numbers

on the conditional mean scalar dissipation, and conditional mean velocity are pre-

sented and discussed. Information concerning unconditional turbulent fluxes are

also presented. The anomaly found in previous studies (Libby & Bray 1981, Moss

1980) of counter-gradient diffusion for the turbulent flux of the progress variable is
investigated.
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2. Accomplishments

_.1 Equation for the conditional average of the specie_ ma_s fraction

The transport equation for the conditional average of the mass fraction of a

reactive species has been derived by Bilger (1993-b) from the balance equations for
the species mass fraction _ for the species i and for the progress variable c based

on the enthalpy which will be defined below. Its derivation is similar to that used

for non-premixed flames (Bilger 1993-a). Klimenko (1990) has a different approach

which has not been implemented in premixed flames.
The balance equation for the mass fraction Yi is:

0I_ 0 0Yi,
(pv,b-_k)+ w, (z)p--_ + pUk Ozt - Ozt

where _Di is the molecular mass diffusivity for the species i, p the mass density, Ut

the velocity vector, and _bi the chemical reaction rate.

For the progress variable c, we use the special definition proposed by Bilger (1993-

b):
h" - h i - 2h + 2hu

c= (2)
Ah •

Here, h isthe totalenthalpy,h" representsthe sensibleenthalpy,and the subscript

u characterizesthe unburnt gases.The sensibleenthalpy riseAh ° isgiven by the

adiabaticburnt valuelessthe unburnt value.Thus, the progressvariablec varies

to 0 in the freshgasesto 1 in the fullyburnt gasesforadiabaticflames.For non-

adiabaticflames c can go beyond unity,thisbeing consideredusefulfor studying

NO formationand CO burnt out.

The transportequationforh and h* arerespectively:

Oh Oh 0 Oh Op
+pv_-_-;_= _-;_(p_-;_)+ _ -_,. (3)P_-

N

Oh" _ Oh" O , Oh', Op_,. + _,,_h{ (4)
P-_- + Pv_b-;;_= a%-;_P%-;;_)+ _ ,=,

where a represents the thermal diffusivity of the mixture, p the pressure, CR the

radiative heat flux, and Ah{ the heat of formation for the species i.

According to its definition given in Eq. (2), the equation for c is directly obtained

by combining Eqs. (3) and (4):

oc oc o oc 1
a'pO _ ) lbiAh{ (_)

Here, the pressure rise and the radiative heat losses have been neglected.

The conditional average of the species mass fraction I_ conditioned on the progress

variable c(zk,t) being at a chosen value _ can be defined:

O,(¢,x_,t) = (_(x,,t)I c(_,t)= ¢) = (Y, l0 (6)
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From this definition and from Eqs. (1) and (5), Bilger (1993-a) has obtained the
balance equation for Qi:

+ (pl I¢)°0'
axk Oc Oc ._ 02Qi- (p I ¢)(aOx_ Oxk I_2--_- + (_, I¢)

+eQ+% Ah. Ahf(w,l ) (7)

with

O_

Lei = _ (8)

eQ = _-zk (p:Di ) + ({pviOQ,¢ COc-0x + - )} I¢) (9)

1 0 ((puky, IQP_(¢)) (lO)
ev _ Pc(¢)(gxk

Here, Lei represents the Lewis number for the species i, uk and yi are the fluctu-

ating parts of respectively Uk and Yi about their conditional means, and Q,c is the
derivative of Q with regards to c. The probability density function of c defined at

c = _ is given by P_(¢).

If the Reynolds number of the flow is sufficiently high, the molecular diffusion

fluxes present in eQ are negligible compared to the turbulent flux (Bilger 1993-

a). The conditional turbulent flux ey has been observed negligible in the case of a

reacting mixing layer (Bilger 1993-a) and can probably be neglected in premixed
flames.

The conditional mean chemical reaction rate can be approximated using a Taylor

expansion for (d;i [ ¢) (Bilger 1993-b). This technique has been used by Smith e_

al. (1992) for the prediction of radicals and NO in a turbulent diffusion jet flame
and comparisons with experimental data lead to satisfying agreements.

Even after these approximations, some terms of Eq. (7) remain unclosed and need
to be modeled. Our attention will be focused principally on the conditional mean

velocity (Uk I ¢) and on the conditional mean scalar dissipation N¢ defined by:

N¢ = (a Oc OcO_k O_k I¢) (11)

These two terms are also crucial quantities in models using pdf methods. They

appear explicitly in the transport equation for the pdf P(¢):

_, OP cO 02
(p l ¢)°'_--_ + (p l _)(Vk l )_x-kxk - O-_((_bc l ¢)P) +'_ ((pI ¢)N_P) (12)

where _b, is the last term appearing on the right hand side of Eq. (7).
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_._ The numerical ezperime,_t of Trou,J_ £ Poi_ot (1994)

Since measurements in premixed flames are limited due to spatial resolution prob-

lems (Bilger 1993-c), DNS offers the possibility of having access to specific quantities
of statistical interest such as unconditional and conditional moments (mean, vari-

ance, etc). The numerical results used in the present analysis come from the DNS of
turbulent premixed flames performed by Trouv6 and Poinsot (1994). These authors
have studied the interaction between an initially planar premixed laminar flame

with realistic heat release and a three-dimensional decaying isotropic turbulent flow

field. Their code fully resolves the compressible Navier-Stokes equations using a

sixth order spatial scheme (Lele 1992) and a third order temporal scheme (Wray

1992). Due to the heat release and the resulting gas expansion, the boundary con-

ditions in the direction of propagation of the flame are inflow/outflow non-reflecting

(Poinsot and Lele 1992), whereas periodicity is used in the two other directions.

The chemistry is described by a single-step irreversible reaction using a classical

Arrhenius law. Following the notation of Williams (1985-a), the reaction rate for

the deficient species (subscript R) can be expressed:

( (13)tbR = ApYR exp 1 - _o(1 - 0)]

where:

0 =(T - T,,)/(Tb - T,,) is the reduced temperature

qo =(Tb - T,,)/Tb represents the heat release parameter
=_Ea/R°Tb is the Zel'dovich number

A =B exp(-fl/qo) is the pre-exponential factor

The subscripts u and b represent respectively the unburnt and burnt gases and Ea
the activation energy of the reaction, R ° being the universal gas constant.

Moreover, in the simulations, the temperature dependence of the transport coef-

ficients is taken into account by a power law:

where p represents the dynamic viscosity and b is a constant equal to 0.76. The

thermal conductivity and molecular diffusivity of the reactants are determined by

considering constant Prandtl and Schmidt numbers.
Different simulations have been performed for various Lewis number (0.8, 1.0,

1.2), the other physical parameters being the same for all the configurations. At
time t = 0, the turbulent Reynolds number based on the Taylor microscale A is

Re_ = 50 and the initial Damkbhler number (defined by De = (A/u')/(a,,/S2Lo))
is Da = 0.4. Here, au represents the thermo-diffusivity in the fresh gases, SLo the

laminar flame, speed and u' the rms turbulent velocity. These initial conditions
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FIGURE 1. Evolution of the DNS in the diagram of premixed turbulent flames -

comparisons with the operating domain of classical experimental devices and S. I.

engines.

correspond to the ratios u'/SLo = 10 and lt/6F = 5.2 (It is the integral length scale

of the turbulence and 6F the laminar flame thickness defined by 6F = au/SLo).

The flames investigated in the DNS evolve in the thickened wrinkled flames regime

of the Borghi diagram for turbulent premixed flames (Borghi 1985) as is shown in

Fig. 1. Also schematically shown in this diagram is the operating domain of classical

experimental devices and S. I. engines (Abraham 1985).

In the following analysis, all of the cited turbulence quantities are obtained from

a simulation of 3-D decaying isotropic turbulence with no combustion. All cases
have been performed using a 1293 computational domain.

2.3 Statistical analysis

In our analysis, since radiative heat losses and pressure rise are neglected and the

specific heat is constant, the progress variable c defined in Eq. (2) is equivalent to

c = (T - Tu)/(Tb - T,,) and is equal to 0 in the fresh gases and to 1 in the fully
burnt gases. In the calculation of the scalar dissipation N = (_(Oc/Oxk)(Oc/Oxk),

the thermo-diffusivity o_ is temperature dependent according to the relation (14)
and by using the constant Prandtl number (Pr = 0.75).

In the determination of the conditional statistics, the progress variable space

is divided into 100 sub-domains. In each point of the computational domain, the

variables of interest are calculated and stored in arrays corresponding to the sub-
domain of ff at this point. Conditional averages are then obtained by dividing the

variable contained in the arrays by the number of samples of each sub-domain.
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Since in the DNS the direction of propagation of the flame front is following the x

direction, only (U1 I _) is of interest and will be investigated in the present analysis.
For the unconditional statistics, since we have access to only one realization, the

problem is assumed to be homogeneous in the y - z directions (x being the direction
of propagation of the flame front). Then, the computational domain is divided into

slices perpendicular to the x direction, and statistics are calculated for each plane

through the turbulent flame front. The averaging of a variable Q varying spatially

and temporarily is then estimated as it is proposed by Trouv6 & Poinsot (1994):

±/(Q(x,t)) = LuLz Q(x,y,z,t)dydz (15)

where L_ and Lz are the size of the computational box in the y and z directions.
Through the flame brush _', the density weighted mean of c increases monotically

with x. Consequently, the results will be presented using the mean progress variable
_"instead of the x coordinate.

2.4 Results

2.4.1 The conditional dissipation rate N_

Because it represents the small scale mixing or molecular dissipation of a scalar

(concentration, temperature), the dissipation rate of the progress variable N is a
crucial quantity in turbulent combustion (Borghi 1990, Bray 1980, Mantel 8: Borghi

1994). In the case of turbulent premixed combustion, the mean reaction rate is di-

rectly proportional to ,_ as has been demonstrated by Bray (1980) in the limit of

high DamkShler numbers. Often, this term is modeled utilizing the dissipation time
scale of the turbulent kinetic energy and a suitable constant, so that N _ c'2/vt

(Bray 1980, Spalding 1971). However, further studies have shown that the pro-

portionality constant depends on at least two parameters describing the structure

of the premixed flame such as the DamkShler and turbulence Reynolds numbers

(Mantel &: Borghi 1994, Said & Borghi 1988). In those studies, it appears that the
ratio of the two dissipation time scales R = vt/vc (re represents the dissipation time

scale of the scalar) is a function of the ratio kl/2/SLo, which can also be defined by

kl/2/SLo (x (Ret/Da) 1/2 (k represents the turbulent kinetic energy). Said & Borghi

(1988) proposed an algebraic formula for R whereas Mantel & Borghi (1994) have

derived a transport equation for N.

For the conditional dissipation rate, few theoretical developments exist, and ex-
perimental and numerical data are only available for non-premixed combustion or

non-reacting flows. Both Mell et al. (1994) in their numerical simulations and Li &

Bilger (1993) in their experimental study have modeled the conditional dissipation

of a conserved scalar Nu using the unconditional one and a frequency related to the

large scales of the turbulence:

N_ _ N_'_= RZ772 k (16)
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where R is the time scale ratio assumed to be constant, e represents the dissipation

of the turbulent kinetic energy, Z is the mixture fraction in the physical space, and

the mixture fraction in the domain of phase. These authors conclude that this

classical closure gives good predictions for their experimental and numerical results,

although more detailed modeling of N¢ is better (Mell et al. 1994).

However, this kind of closure apparently valid for non-premixed systems cannot

be applied for premixed flames because the turbulent mixing is not the only cause

of scalar variance annihilation. Chemical reaction is also involved and has to be

considered in the modeling of N¢. This is illustrated in Fig. 2 which shows the

evolution of R across the flame brush. The ratio R varies significantly through

the flame brush ranging from 0.3 to 1.5. This is consistent with the values found

by Beguier et al. (1978) in the case of non-reacting flows. Only a slight effect

of the Lewis number is observed on R (see Fig. 2-a). As the time goes on, we

note in Fig. 2-b that R is less than unity in the most part of the turbulent flame

front (0.1 < _" < 0.9). This indicates that the turbulence dissipates more rapidly

than the fluctuations of _'. In such a case, it clearly appears that the well-known

Eddy Break-Up model will significantly overestimate the mean reaction rate since
Webucx _'(1 -- c-')/rt.

Fig. 3 shows the form of Nero,_- = Ng,,,,rch (rch represents a chemical time

scale defined by rch = au/S2Lo) in a planar laminar flame front for different Lewis

numbers. As expected, _rej,,_ is insensitive to the Lewis number since the progress

variable is expressed in terms of temperature instead of the concentration of fuel,

for instance. Unlike Bilger (1993-b), N¢ does not have a symmetric shape, but

has a maximum value towards the burnt gases. This asymmetry is due to the

high activation energy for the kinetics, whereas Bilger (1993-b) is for a full kinetic

mechanism. We can note the quadratic behavior of N¢,,m in the preheat zone

(_ < 0.6) as given by the convection diffusion balance:

dc d(dc)puSLo dx -- dx Pa-_x (17)

which leads directly to N¢,.,, = (T/T,)I-b._ 2.

Fig. 4 shows the evolution of N¢ (normalized by the laminar value Net.. , ) for the

turbulent flame with Le = 1.0 versus ff for different times (t/r0 ranges from 1.4 to

4.5, r0 being the eddy turn-over time). At the earliest time results are shown after

one eddy turn-over time, and thus the flame has had the time needed to adapt itself

to all the spectrum of the turbulence. Since in the DNS positive stretch occurs (on

average) more often than negative stretch (Trouv_ & Poinsot 1994), the profiles of

concentration and temperature are steepened, and we can expect higher values for

N¢ than in the laminar case. At earlier times, this enhanced mixing appears to

be very strong in the preheat zone but also may be dependent on the DamkShler

number. Since the DamkShler number is low, the instantaneous flame front does

not respond immediately to the turbulent flow field, and in the preheat zone, N¢ is

2 or 3 times greater than the laminar value. The reaction zone, however remains

almost unaffected by the turbulent mixing, and we observe an only slight increase
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FIGURE 2. Profiles of R = rt/rc versus _'. a) for different Lewis number at

t/ro = 4.5: Le = 0.8: -- ; Le = 1.0: .... ; Le = 1.2: ...... . b) for different

times and Le = 1.0: t/ro = 1.4- Ret = 50 - Da = 0.5:-- ; t/ro = 2.7- Ret = 33

- Da = 0.6: .... ; t/ro = 3.6 - Ret = 29 - Da = 0.8: ...... ; t/ro = 4.5 - Re, = 25 -
Da = 1.0:-----

of N¢ of approximately 20%. As the time goes on, the DamkShler number increases
due to the decay of the turbulence. Thus, the turbulent flame comes more into the

flamelet regime and N¢ behaves more and more as in the laminar case. At this
point, there is no distinction between the preheat zone, and the reaction zone and

N¢/No,,, is almost constant and close to unity in all of the domain of (.

The variation of N¢/No, m across the flame brush is represented in Fig. 5 for

different values of (. It appears that NJNOo m is almost constant through the
turbulent flame front and is only weakly dependent on _'. Thus, conditional statistics

for N¢ can be extracted from all the computational domain rather than in U - z
planes.



12 T. Mantel _J R. W. Bilger

0.6

0.5

0.4

0.3
|

0.2

0.I

I I I I

0.2 0,4 0.6 0.8

progress varisble
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FIGURE 4. Profiles of NJN_,om versus ff for Le = 1.0.
t/ro = 2.7: .... ; t/ro = 3.6: ...... ; t/ro = 4.5:

corresponding DamkShler numbers.

t/ro = 1.4: _ ;
See Fig. 2 for the

The influence of the Lewis number on N¢ is also investigated and presented in

Fig. 6 for 2 different times of the interaction. At time t/ro = 1.4 (corresponding

to Da = 0.5), we notice a significant effect of the Lewis number in the reaction

zone (_ > 0.7). In the preheat zone, no effect of the Lewis number is observed.

The turbulent mixing predominates and diffusivities (of species and temperature)
are too slow compared to the chemistry to allow the profile of c to behave like in

the laminar case. In the reaction zone, the end of the temperature profile seems

to be affected, illustrating an effect of the Lewis number. The gradients of c are
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steeper for Le = 0.8 and flatter for Le = 1.2 (for Le = 1.2, we can note that N¢

decreases significantly below the laminar value). There is no clear explanation for
such behavior. We can argue that for a positive stretch, the local reaction rate

increases (decreases) when the Lewis number is smaller (greater) than unity and

affects the end of the temperature profile increasing (decreasing) the gradients of c.

For time t/vo = 4.5 (which corresponds to Da = 1.0), N; is affected uniformly by
the Lewis number and no distinct behaviors exist between the preheat and reaction

zones. The gradients of e are steeper everywhere in the _ space for Le = 0.8 and

weakly flatter (especially in the reaction zone) for Le = 1.2. This result is quite
surprising because we can expect that when the Damkhhler number increases, the

turbulent flame behaves more and more in the flamelet regime. Thus locally the

flame should have the structure of a laminar flame, and consequently the 3 curves of

Fig. 6-b should merge together. This comment concerns mainly the case Le = 0.8

for which the gradients of c are significantly higher than the two others cases. Since
in this case the Lewis number is smaller than unity, we can hypothesize that thermo-

diffusive instabilities have become non-negligible and provoke additional stretch that

is not present in the cases Le = 1.0 and Le = 1.2.

In conclusion, from the Fig. 6, it appears that the ratio N¢/No,,, depends
strongly on the Damkhhler number, particularly in the preheat zone. At this point,

we cannot make a conclusion on the dependency on Lewis number since we are
not able to separate the effects of the turbulence and the effects of thermo-diffusive
instabilities.

In order to get more information on the role of the mixing on the structure

of the flame, the product P((;_.N_ is extracted from the DNS for Le = 1.0 at

t/To = 4.5. Fig. 7 shows ,B((;_.Ng (non-dimensionalized by rch) as a function of (
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at different locations across the flame front. It appears that the dissipation occurs

almost everywhere in the progress variable space, but most of it takes place in the

reaction zone associated with values of ¢ comprised between 0.6 and 0.9. Higher

dissipation occurring in the preheat zone is only observed in regions of the turbulent

flame located near the fresh gases.

The density-weighted pdf i5(¢) is shown in Fig. 8 for different sections of the

flame brush at different instants and Lewis number. For all the cases studied here,

the pdf P(_) exhibits a strong bimodal shape corresponding to fresh and fully burnt

gases. However, P(_) is not purely bimodal and a broad peak on the fresh gas side

(which characterizes regions of the flame brush where instantaneous flame fronts

are thickened) is observed. Between these two peaks (for 0.3 _< _ <_ 0.9), the shape

of P(¢) is rather flat and ranges from 0.2 to 0.8. This represents intermediate

events occurring in the instantaneous flame fronts. This behavior can be expected

according to the schematical description given in Fig. 1 concerning the regime of
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propagations of these flames.
Since most of the available data for turbulent premixed combustion are obtained

using unconditional statistics, it is of interest to calculate unconditional variables
from their conditional values. The unconditional statistics for a variable Q can be

directly obtained from the conditional value <Q I _) and the probability density

function P(_):

_) = <Q I ¢>P(_)d¢ (18)

If <Q I ¢> is known, it appears that the pdf P(_) has to be carefully estimated.

As we said in the introduction, the pdf P(() can be directly obtained by solving

its transport equation (an expression for P(¢) can be found in Borghi 1988, Pope

1985-b) or estimated by assuming realistic shapes for P(¢) (Borghi 1988, Bray 1980)

and predicting only its first two moments, _ and c"2.
h way to estimate _5(_) is to choose a j3 function as proposed by Janicka &

Kollmarm (1978):

P(¢) = _.-i(1 _ _)b-1 (19)

fo I ¢"-I(1 _ _)b-ld_

(_(1_ -_ ) 1 -_"with a = _'k 1 and b = a--=--.c Fig. 9 represents the comparison be-

tween the pelf P(_) given by the DNS and the pdf estimated from Eq. (19) for

different positions across the turbulent flame brush. The parameters a and b are

calculated using _" and c''2 extracted from the DNS. The agreement between the
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DNS and the model of Eq. (19) is relatively satisfying for each of the five sections

studied across the turbulent flame front. The _ function constitutes an interest-
ing approach to estimating/_(_) in a presumed pdf approach applied to turbulent

premixed combustion.

As we have already mentioned, the pdf P(() appears strongly bimodal, but a

significant fraction of events occurs between the two spikes located at ( = 0 and

= 1. This is probably a consequence of the low DamkShler number. Thus, the pdf
present between _ = 0 and _ = 1 can become a crucial quantity in the estimation of

some terms which are equal to 0 for _ = 0 and _ = 1. This is particularly the case for

the conditional dissipation rate for which we have (N¢ I_ = 0) = (N¢ I_ = 1) = 0.
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The unconditional dissipation rate defined by:

= (N_ I_)_(¢)d_ (20)

is strongly dependent on the value of 13(¢) between the two spikes, especially when

Da is low as in this DNS.

In order to estimate how far we are from a purely bimodal combustion regime,

we have also studied the fluctuation level parameter 9 defined by Bray (1980):

Ctt2

g - _(1- _ (21)

This parameter varies from 0 for no fluctuation to 1, the maximum possible value

corresponding to a purely bimodal pdf. In this last case, only fully burnt or fresh

gases are present in the flow.

The results in Fig. 10 show that even if the level of fluctuations is high, 9 is

significantly below the maximum value of 1.0. Thus, in some regions of the flow,

intermediate states occurs quite frequently as has already been shown in Fig. 10-a

where the pdf shows a plateau of about 0.5 when _"= 0.5.

Because different models for turbulent premixed combustion relate directly the

mean reaction rate to _'(1 -c_ and a suitable frequency, this result is important from

a modeling point of view. In cases such as this, these models will overestimate the

mean reaction rate. This is particularly the case in the Eddy Break-up formulation

(Spalding 1971) and for the BML approach (Bray & Libby 1986). An alternative

possibility is to directly calculate c"2 from its transport equation. However, this

approach requires a good model for the dissipation rate N, which is not an easy

task. We have already discussed the difficulties and the different possibilities of

estimating this quantity (Mantel & Borghi 1994, Said & Borghi 1988).

1L4.2 The conditional mean velocity

Like the conditional dissipation rate N¢, the conditional mean velocity (Uk I ¢)

appearing in Eq. (7) has to be modeled. Since very little is known concerning

(Uk I ¢), information from experimental data or from DNS is of interest in order to

propose realistic closure for this term.

The conditional mean velocity (Uk I ¢) can be obtained from the conditional pdf

P(Vk [ ¢) of UA: and c:

F(uk I_) = VkP(Vk I¢) de ark (29_)
OO

where Vk represents the stochastic vector variable related to the velocity vector

Uk(xk, t). According to Bayes theorem, P(Vk I ¢) is obtained from the joint pdf of

Vk and ¢ P(Vk; ¢) and the pdf for ¢ P(¢):

P(Vk I ¢) = P(Vk;¢)/P(¢) (23)
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The joint pdf of Vk and ff can be modeled by presuming realistic shapes for P (Borghi

& Dutoya 1978) or by calculating its transport equation (see Pope 1981-1985 for
the derivation and the modeling of this equation).

The conditional mean velocity can be extracted from the DNS for the different

available cases. Since in the y and z directions the conditional mean advection

term is zero from homogeneity, only the conditional mean velocity in the direction

of propagation of the flame (z direction) is investigated.

Fig. 11 represents the variation of the conditional velocity (UI [ if) across the

turbulent flame front for different values of _. During the simulation, the velocity

conditioned on the fresh gases is higher than the one conditioned in the burnt

gases. Thus, the slip velocity (which is the difference between the mean velocity
conditioned in the burnt gases and the mean velocity conditioned in the fresh gases)

is always negative and indicates that the flame displacement is strongly correlated
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with the velocity fluctuations in the unburnt gas. Thus, on most part of the flame

front, the burnt gases are animated with negative velocities (toward the fresh gases)

whereas the fresh gases move with positive velocities (toward the burnt gases). In

the turbulent flame front, fingers of fresh gases appear in the burnt gases (and

conversely).
We can also notice only a slight acceleration of the gases through the laminar flame

front. All the isopleth contours are moved with the same displacement velocity. This

is probably due to the fact that the pressure difference across the instantaneous

flame front is insufficient to produce significant acceleration of the fluid through

the instantaneous flame front in the x direction. Acceleration of the burnt gas

occurs in the mean pressure gradient across the turbulent flame brush as a whole
rather than in the instantaneous flame fronts. It seems that the instantaneous flame

fronts adjust themselves to provide dilatation without acceleration. If this finding is

sustained in other studies, it could be an important hypothesis on which to base a

new approach to the theory of turbulent premixed flame propagation. It is evident

that the variation of (U1 I () through the flame brush will be significant in CMC

modeling.

1L_.3 Turbulent diffusion fluze_

In turbulent combustion modeling, the turbulent fluxes of the mean progress
variable are classically closed using a gradient transport approximation:

_"_'-_. b' t (_

= (24)

where vt is the eddy viscosity and Sc_ a Schmidt number. From previous studies,

it is known that such modeling is not always sound for turbulent premixed flames

(Borghi & Dutoya 1978, Libby & Bray 1981, Mantel & Borghi 1994, Moss 1980).
Both Dutoya & Borghi (1978) and Mantel et al. (1993) found that the Schmidt
number Sct is not constant and varies significantly across the turbulent flame front.

Moreover, the modeling of the turbulent flux strongly affects the structure of the

turbulent flame brush. In their study, Mantel et al. (1993) show that the tur-

bulent flame thickness is over-estimated by about 50% by the gradient transport

approximation. Libby & Bray (1981) have even formulated a model for counter-

gradient diffusion due to the large variation of density occurring in reactive flows

in accordance with the experimental results of Moss 1980). With a sufficiently
high heat release (r = Tb/Tu - 1 > 3), the authors show that a pressure gradi-

ent present in the flow can preferentially accelerate the low density gases and then

create counter-gradient diffusion processes. However, the pressure gradient is not
the only candidate able to provoke counter-gradient diffusion. In a recent study,

Trouv_ et al. (1994) show that while counter-gradient diffusion is present at low
turbulence, in the presence of strong turbulence the flame brush tends to become

more and more wrinkled and thickened, leading to classical gradient diffusion trans-

port. The authors also show that the wrinkling of the turbulent flame brush is a
crucial parameter controlling gradient and counter-gradient diffusion.
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1# 112

From the DNS, we have computed the turbulent fluxes u"c" and u c across

the flame brush at different times of the interaction and Lewis number (see Figs. 12

and 13). For the same heat release as in Libby & Bray (1981), no counter-gradient

diffusion is observed for u" c" from the DNS. Similarly, no counter-gradient diffusion

is observed for the turbulent flux u"c ''2.

3. Conclusion

Conditional statistics for the scalar dissipation N¢ and the mean velocity (U1 ] ¢)
have been extracted from direct numerical simulation. The simulations used in this

study have been performed by Trouv_ & Poinsot (1994) and describe the interaction

between a premixed flame with realistic heat release and an isotropic decaying

turbulent flow field. The turbulence intensity is at the high end of the range of
interest and the DamkShler numbers at the low end.
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The conditional scalar dissipation N¢ behaves differently in different parts of

the instantaneous flame fronts. In the reaction zone, N¢ is weakly affected by the

turbulent mixing whereas in the preheat zone, the local gradients of the progress

variable _ are steeper due to the stretch effects which tend to increase N¢. This is

particularly notable when the Damk6hler number is low. As the time goes on, Da

increases (due to the decay of the turbulence in the simulations), and locally, the
instantaneous flame fronts resemble more the laminar flamelet.

As expected from the heat release, the conditional mean velocity (x-component)

(U] I if) evolves almost linearly through the turbulent flame brush. We also notice

a negative slip velocity, which characterizes the wrinkling of the turbulent flame.

We found that in this simulation, burnt gases are moved towards the fresh gases

and vice versa, producing a highly wrinkled flame as can be observed in Trouv4 &

Poinsot (1994). Due to a weak local pressure gradient, only a slight acceleration of

the gases across the instantaneous flame fronts is observed.
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The weighted pdf b(_) derived from the DNS shows a strongly bimodal shape

(for _ = 0 and _ = 1). Between these two peaks, non-negligible values for P(_)

are observed (typically 0.2) which characterize intermediate states. A satisfying

agreement is observed between/_(_) estimated from a/3 function and/3(_) extracted
from the DNS.

The turbulent fluxes u 1c and .... 2.... u1 c across the flame brush are derived from the

DNS. Contrary to previous studies (Libby & Bray 1981, Moss 1980), no counter-

gradients have been found in these simulations. According to the recent study of

Trouv_ et al. (1994), the presence of a strong wrinkling of the turbulent flame brush

is more favorable to gradient diffusion.

The present study constitutes a first analysis of conditional statistics in premixed

turbulent flames. Further experimental and numerical studies have to be done
in order to provide new information, notably at higher Reynolds and Damk6hler
numbers.
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Lewis number and DamkShler number
effects in vortex-flame interactions

By J.-M. Samaniego

1. Motivation and objectives

Premixed flames are encountered in numerous practical configurations, and a

better knowledge of the fundamental mechanisms controlling their propagation is

needed to help model their behavior. In practical devices, premixed flames gener-

ally propagate into a turbulent stream of reactants, and their structure and local

flame speed are modified. Although some recent studies demonstrate the persis-

tence of laminar flame structures under highly turbulent conditions (Poinsot et al.

1991, Furukawa ef al. 1993), the structure of turbulent premixed flames, either

as a flamelet or thickened flame, is still a matter of debate. Hence, the develop-

ment of turbulent combustion diagrams is an ongoing effort (Borghi 1988, Poinsot

et al. 1991). However, despite uncertainties concerning the actual structure of pre-

mixed flames in real combustion devices, studies of the propagation properties of

a laminar flame in turbulent flow conditions contribute to a better understanding

of turbulent premixed flames. In such flows, premixed flames experience stretch,

strain, curvature, and unsteadiness, and are subject to various effects depending on

the thermodiffusive properties of the mixture (Lewis number), adiabaticity (heat

losses), and detailed kinetics (Clavin 1985, Borghi 1988, Law 1988, Clavin 1994).

In order to study these effects in detail, a combined experimental-numerical study

of the interaction of a two-dimensional vortex pair with a plane premixed laminar

flame has been carried out. The selected geometry is two-dimensional in order

to allow for the use of quantitative line-of-sight measurement techniques and for

comparisons with two-dimensional direct numerical simulations. The experiment is

used to identify possible effects of the Lewis number and of radiative heat losses, and

direct numerical simulations reproducing the experimental conditions are used to

investigate the role of the Lewis number, of heat losses, and of multi-step kinetics.

The heat losses considered in this study are essentially radiative losses from the

burnt gases and do not include conductive losses to the walls.

This report presents the final results of this study of vortex-flame interactions.

The main result is the creation of experimental data sets of vortex-flame interac-

tions, which demonstrate the importance of the Lewis and DamkShler numbers to

the flame and which allow for comparison with direct numerical simulations. In turn,

the comparison between experimental and numerical results, presented in Mantel

1994, shows that the Lewis number effects and complex chemistry play significant

roles, which can be reproduced using a two-step reaction mechanism.
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FIGURE 1. Schematic view of the facility

2. Accomplishments

2.1 Ezperimental details

An experimental facility with a two-dimensional flow has been developed and has

been described in the last issue of the Annum Research Briefs, where details about

the vortex generation and flame stabilization are reported (Samaniego 1993). The

two-dimensionality of the flow field is an important feature of this study since it
allows for comparison with two-dimensional direct numerical simulations of vortex-

flame interactions. The choice of a two-dimensional flow field is dictated by the

necessity of providing numerous quantitative experimental and numerical data in

the simplest though relevant flow configuration by the use of line-of-sight CO_
emission imaging as a quantitative measurement of the heat release rate, and by
limitations of current computer capabilities that would render three-dimensional

calculations with multi-step kinetics too expensive.

The test section comprises a vertical duct, with a square cross-section of 63.5 ×

63.5 rnm, equipped with quartz windows for optical access (see Fig. 1). Mixtures
of fuel and oxidizer are fed into the test section through a contoured converging

nozzle. Different fuel and oxidizer mixtures axe used to investigate the effect of the

Lewis number. The Lewis number is determined using mixture-averaged properties
(Strehlow 1979, Williams 1985). Five fuel-lean mixtures were investigated: ¢ = 0.55

CH4/Air (Le = 0.96), ¢ = 0.46 C2H4/Air (Le = 1.24), 4) = 0.51 Calls�Air (Le =
1.60), ¢ = 0.61 CH4/O2/CO2/Ar (Le = 0.80), and ¢ = 0.61 CH4/O2/CO_/He

(Le = 1.54). The flame is stabilized on a heated Nichrome wire of 0.5 rnm diameter,
resulting in a V-shaped flame.

Several parameters describing the vortex pair and the flame control the interaction

between the vortex and the flame. The vortex parameters, determined from smoke
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Table 1. Vortex parameters

tupe o[ vortex s (cm) VD (cm/s) R (cm) r_ (ms)

Slow 0.85 135. 10.0 4.15

Medium 0.60 350. 4.0 2.07

Fast 0.60 600. 7.4 1.09

Table 2. Flame parameters

Mixture ¢ Tad am SL _SL Le HL

(K) (deg)(cm/s)(cm) xlO -a

CH4/Air 0.55 1567 13 9.5 0.022 0.94 0.55

C2H4/Air 0.46 1515 9 0.022 1.25

C3Hs/Air 0.51 1530 15 9 0.020 1.60 0.40

CH4/O2/CO2/He 0.61 1643 13.8 0.033 1.54 1.10

CH4/O2/CO2/Ar 0.61 1615 6.7 0.024 0.82 2.50

visualization experiments, are: the distance between the vortex centers, s, the vortex

pair self-induced velocity, VD, and the radius of curvature of the trajectory, R. The

flame parameters are: the mean flame angle, am, the flame speed, SL, the flame

thickness, _L, the Lewis number, Le, and a heat loss coefficient, HL, which is

defined as the ratio of the radiative loss in the reaction zone to the chemical energy

release. They depend on the mixture composition (fuel, diluent) and on the bulk

flow velocity, V0. In the present study, V0 = 0.35 m/s. The vortex and flame

parameters are reported in Tables 1 and 2. Details on the determination of these

parameters can be found in Samaniego et al. 1994a.

Line-of-sight CO_ emission imaging, using an intensified CCD camera, is per-

formed to obtain heat release rate fields. Each image is digitized in a 184 × 240

8-bits pixel array (a pixel corresponds to a field of vue of 0.364 × 0.364 ram). The

light intensifier is used as a fast shutter in order to freeze the flow field. The expo-

sure time is 250/_s, resulting in a spatial resolution of 1.5 mrn in the worst case. A

timing circuit allows the triggering of the intensifier at selected instants during the

interaction. For each value of the time delay, ten to fifty realizations are averaged

in order to improve the signal-to-noise ratio. Images are corrected for background

noise and pixel-to-pixel variations. After correction, the unccrtainty on the pixel



32 J.-M. Samaniego

value is ± 2 % of the maximum value in the worst case.

2.2 Determination of the heat release rate

The rate of heat release is an important flame quantity which controls its prop-

agation, and its monitoring provides insight into the respective effects of the Lewis

number, radiative losses, and complex chemistry. The choice for studying this

quantity is made for two reasons: first, it can be determined experimentally by

measuring the flame chemiluminescence; second, this quantity is predicted by most

combustion models and can therefore be used for their validation by comparison
with experimental data.

Chemiluminescence refers to light spontaneously emitted by electronically excited

molecules as they decay to their ground state. In hydrocarbon flames such as those

investigated here, flame chemiluminescence occurs in the UV and visible range of

the spectrum and is due principally to four emitters: CH*, C_, OH*, and CO_.

These electronically-excited molecules have different emission spectra. The first

three emitters have band-structured emission spectra which correspond to specific

electronic transitions (CH* peak at 431.5 nrn corresponding to the A2A ---* X2H

transition, C_ peak at 516.6 nm corresponding to the ASH- X3II transition, OH*

peak at 306.4 nm corresponding to the 2E+ ___,2YI transition Gaydon 1974), while

CO_ has a broadband emission spectrum extending from 250 to 800 nrn (Myers &

Battle 1967).

Recently, Samaniego et al. 1994b, after showing that CO_ is the main emitter

in fuel-lean flames, have successfully correlated the CO_ emission intensity and the

rate of heat release for a ¢ = 0.55 CH4/Air flame based on complex chemistry

calculations of strained flames. The resulting correlation takes the form:

Q (Z'_ °'37
= \ Yoo] (1)

where Q is the integral of the heat release rate, Q, across the flame front, i.e.:

Q =/+5 Qdx ,

2" is the CO_ emission intensity integrated across the flame front, i.e.:

=/+5 Idx ,
fi[

and the subscript 0 refers to the unstrained premixed laminar CH4/Air flame (¢ =

O.55).

It was shown that expression (1) is not affected by unsteadiness and can be used to

determine the heat release rate in situations where strain-rate is the only significant

parameter controlling the flame evolution. As is discussed later, it is the case in the

present study of vortex-flame interactions since the effect of curvature, which is not

accounted for in Eq. (1), can be neglected.
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FIGURE 2. Dithered images of CO_ emission of a _ = 0.51 propane-air flame, left:

t = 0, center: t = 17 ms, right: t = 19 ms.

However, Eq. (1) is only strictly valid for the ¢ = 0.55 CH,/Air flame, and new

correlations should be sought for other mixture compositions (i.e. different fuel,

different diluent).

2.3 CO_ emission imaging

Instantaneous images of CO_ emission from the flame were obtained using an

intensified Amperex CCD camera equipped with a NIKON glass lens (f = 105

ram, f/1.2) and a band-pass filter BG39 with cut-off wavelengths at 340 and 700

nrn. This filter is used to reject near-infrared emission (700-1200 nrn) from the

burnt gases originating from H20 excited molecules (Gaydon 1974).

Fig. 2 shows a sequence of three flame emission images of a CsHs/Air flame at ¢

= 0.51 taken during a vortex-flame interaction. The parameters of this interaction

are: s = 6.0 ram, VD = 3.5 m/s, R = 40 ram, SL _-- 0.10 m/s, 6L _-- 1.0 rnm, Le

= 1.60, a _-- 15 degrees.

The first image shows the unperturbed flame fronts. The next two images in

Fig. 2 are taken respectively at t = 17 ms and t = 19 ms. Three regions in the

distorted portion of the flame can be identified: 1) a region of extensive strain-rate

and negative curvature, located just ahead of the vortex pair. In this region, strain-

rate effects are predominant, and Eq. (1) can be confidently used to infer the heat

release rate; 2) & 3) regions of high positive curvature, located above and under

region 1. In these regions, curvature may play a significant role, and the validity

of Eq. (1) remains to be evaluated. Therefore, quantitative comparisons between

experimental and numerical data should be restricted to the regions of high strain.

For this purpose, Zmi,, is defined as the minimum value of 2"(a), where :[(a) is

defined as the integral of the CO_ emission, I, across the reaction zone, at the
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FIGURE 3. Slow vortex. Evolution of _. o : Le = 0.94, • : Le = 1.25, • :

Le = 1.60 (see Table 2).

location a along the flame front, i.e.:

I(a) = j( ± Ida "l- ,

where .1_indicates that integration is performed along a normal-to-the-flame front,
and

Zrnin = mini(a)
O'

In all cases, 2"mi, occurs in front of the vortex pair in the region of high extensive

strain. The corresponding minimum heat release rate, Qmin is obtained from I, ni,

using expression (1).

2.4 Effect of the Lewis number

The theory of stretched flames predicts that the behavior of strained flames is con-
trolled by the Lewis number, Le (Clavin 1985, Law 1988). For positively stretched

flames such as in vortex-flame interactions, the burning rate should increase for
Le < 1 flames while it should decrease for Le > 1 flames. This prediction is checked

by monitoring the evolution of Imin, during vortex-flame interactions, between the

slow vortex and all flames (each flame corresponds to a different Lewis number -

see Tables 1 and 2).

It is first verified that all flames undergo the same stretch history. Fig. 3 shows
the evolution of the flame surface area, E, during vortex-flame interactions with the
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FIGURE 5. Slow vortex. Evolution of ]',,,i,, for all investigated flames (see Table

2). [] : Le = 0.82, o : Le = 0.94, • : Le = 1.25, B : Le = 1.54, • : Le = 1.60.

slow vortex pair for all flames. The flame surface area, Z, starts increasing after t
= 15 ms. A mean stretch-rate, K,,_ea,_, can be derived:
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I dE
K_T_ean _ ---

E dt

Kmea. alsostartsincreasingaftert = 15 ms and reachesabout 100 to 150 s-I

at t = 25 ms (seeFig.4). All flamesexperiencethe same overallstretchhistory

which allowsus to interpretpossibledifferencesbetween theseflamesin terms of a

Lewis number effect.

The effect of the Lewis number on the evolution of Zmi, for all flames is shown

in Fig. 5. In all cases, 2"mi, starts at the value of the unperturbed laminar flame
and then decreases under the action of the vortex pair. It can be noticed that the

decrease is more pronounced for higher Lewis number flames. This is better demon-
strated in Fig. 6 where the maximum slope of the evolution of Z,_i,, b, is plotted as

a function of the Lewis number, where the slope b decreases with increasing Lewis
number.
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FIGURE 6. Slow vortex. Correlation between the rate of variation of Zmi, (b),

with the Lewis number (Le).

These results are only in partial agreement with the asymptotic theory: higher

Lewis numbers lead to flames that are weaker when strained. However, the theory

predicts that the burning rate of Le < 1 flames increases with strain, but we observe

a decrease of Zmi, for all flames, including the Le = 0.8 flame. This may be
attributed to various causes: unsteady effects (see section 2.5, theory limited to low

stretch-rates, complex chemistry effects (see DNS).

_.5 Effect of the Damk6hler number

Unsteadiness is an important factor in these vortex-flame interactions which is not

accounted for in the theory of stretched flames. Unsteadiness is quantified by the
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DamkShler number, defined as the ratio of a mechanical time, rm, over a chemical

time, re, i.e.

7"m
Da _-- m

Te

In this study, rm is the characteristic time of evolution of the flame surface area

and rc is the residence time through the flame, i.e. rc = 6L/SL. rm is defined by

the time for S to increase from 1.25 × S0 to 2.00 x S0 where S0 is the unperturbed

value.

2.5.1 Observations

The effect of the DamkShler number is determined by investigating the evolution

of the overall heat release rate Q, tot, and the minimum heat release rate {_rnin. Qtot

is defined as the total heat released by the flame of surface area S and is computed

as:

Q,o, = Q(,,)d,, (2)

Fig. 7 shows the evolution of S, Qtot, and Qmin for the ¢ = 0.55 CH4/Air flame

during its interaction with the slow, medium, and fast vortex pairs (see Tables 1 and

2). These interactions are characterized by Da = 1.80, 0.90, and 0.47, respectively.

Lower values of Da can be interpreted as higher stretch rates. Each set of curves

corresponds to a different DamkShler number. In all cases Qtot lags S. This is

consistent with the fact that Qmin decreases due to flame stretch. Indeed, if Q(a)

were constant along the flame front during vortex-flame interactions, Qto, would be

proportional to _ (see expression (2)). Hence, the non-linearity of the relationship

between Qtot and E is a consequence of stretching due to the vortex pair.

In order to stress the effect of Da, _ and Qtot are plotted in a non-dimensional

time-frame, t + , where time is non-dimensionalized by r,,, and the origin corresponds

to the time at which _ = 1.25 x S0 (Fig. 8). The evolution of S is independent

of the DamkShler number. This follows mainly from the non-dimensionalization

procedure which imposes _(t + = 0) = 1.25 x _0 and S(t + = 1) = 2.00 × E0.

The evolution of Qtot shows a certain similarity in all three cases: Qtot starts

decreasing, reaches a minimum value, and finally increases at a pace comparable

with the evolution of S. One can notice that the minimum value reached by Q, tot

decreases with decreasing Da and that higher values of Da lead to less non-linearity

between O, tot and E. Third, the decrease Qmin is less pronounced for higher values

of Da. These observations display trends that are in agreement with the idealized

infinitely fast chemistry limit, or Da _ oo, where the internal structure of the flame

is not affected by the flow. In this case, Q(a) would be constant, and Q, tot would

be proportional to S. Indeed, as shown in Fig. 8, Qtot converges towards S as Da
increases.
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FIGURE 7. CHa/Air flame (¢ = 0.55). Evolution of E/Eo (o), Qtot/Q=ot,o
(e ), and Q,_i./Qo (e ). Top: slow vortex (Da = 1.80), center, medium vortex

(Da = 0.90), bottom: fast vortex (Da = 0.47).
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2.5.2 Stretching-relazation mechanism

For finite values of Da, unsteadiness, in addition to stretch, plays an important

role. This can be seen in recent studies of unsteady strained laminar flames (see for

example Darabiha 1992, Egolfopoulos 1994). A simple stretching-relaxation model
accounting for unsteadiness may be derived. The main assumption is that two

mechanisms are important: unsteady strain which tends to thin the flame without

modifying the internal flame structure, and the diffusion-reaction process which
relaxes the flame back to an unstrained laminar structure. Effects of curvature are

neglected. Both mechanisms contribute to dQ/dt. They can be modeled by two
additive effects: a term of the form -KQ due to stretch, and a relaxation term of

the form (Q0 - Q)/rr, where rr is a relaxation time. The term due to strain-rate
can be justified by two arguments: 1) curvature being neglected, stretch is equal

to the strain-rate tangential to the flame front, and we have K = aT; 2) the flame

front undergoes a compression --aT along its normal. Therefore the flame front

is compressed at a rate -K along its normal, and the rate of change of Q due
to stretch is equal to -KQ. The second term is an ad-hoc representation of the

diffusion-reaction process using a linear relaxation model and is justified by the fact

that the Q must relax to Q0 in the absence of stretch (actually, different forms for
the relaxation term could be used since there is no real justification for a linear

relaxation process). Therefore, an evolution equation for Q may be derived:

dQ Q0 - Q
- A'Q + --- (3)

dt Tr
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FIGURE 9. Evolution of Q/Qo with strain-rate for a steady strained CH4/Air

flame (¢ = 0.55). Comparison between model predictions (with r_ = 1.25 ms)

and complex chemistry calculations. -- : complex chemistry, .... : linear
relaxation model, ----- : quadratic relaxation model, ----- : cubic relaxation
model.

Interestingly enough, in the steady case (i.e. _ = 0), this model yields:

Q 1
Q0 1 + Kvr

This prediction is compared to the evolution of the relative heat release rate for a

strained ¢ = 0.55 CH4/Air flame, computed from complex chemistry calculations

(Samaniego et hi. 1994b) (Fig. 9). Other predictions using non-linear relaxation

terms are also plotted for comparison (quadratic: 9_°(1 - Q/Qo) '/2, and cubic:

_°(1 - Q/Qo)I/a). In this case, vr = 1.25 ms is the same for all three relaxation
models and is chosen to best reproduce the evolution of Q/Qo predicted by the

complex chemistry calculations. It appears that all relaxation models predict cor-

rectly the qualitative behavior of Q/Qo and that quadratic relaxation provides the

best quantitative agreement. In the following, the linear relaxation model, although

imperfect, is used to further investigate the relationship between Qtot and Z.
Eq. (3) may be integrated over Z using a transport theorem which accounts for

the fact that _ also changes in time (see Candel & Poinsot 1990). One obtains,

after proper non-dimensionalization:

C dQ+o,
+ Q,+o,= (4)

Da dr+

where t + = t/r,,, C = r_/v_ is a constant, Q+t = Qto,/Qtoto, and _+ = _/Eo.
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From this expression it can be seen that, in the limit Da _ cx_, Q+ot = E+ and the

total heat release rate is proportional to the flame surface area, and, in the limit

Da _ O, Q+ot = 1 and the total heat release rate is constant.

In turn, Eq. (4) can be integrated once the evolution of E is known. A convenient
analytic expression for E+ is provided by:

E + = 1 + 4'-' (5)

This formulation mimics the exponential-like growth of E + in Fig. 8, and satisfies

E+(0) = 1.25 and E+(1) = 2. Integrating (4) yields:

Da

Q+t=l+ (Da+Cln4) 4t ' (6)

Fig. 10 shows a prediction of the effect of the DamkShler number using these

analytic expressions for E and Qtot, with C = 0.25. Despite some discrepancies, in

particular, the inability of the model to reproduce the initial decrease of Qtot, the
effect of Da on Qtot is qualitatively well reproduced.

3. Conclusion

This experimental study of vortex-flame interactions has been successfully con-

ducted, and the initial goals of this study have been achieved. The results have
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demonstrated the importance of the thermodiffusive diffusive properties (Lewis
number) and of unsteadiness (DamkShler number) on the response of the flame.
Quantitative comparisons with direct numerical simulations have demonstrated the

importance of complex chemistry effects which could be reproduced using a two-step
mechanism.

Further experimental studies of vortex-flame interactions could be carried out to

elucidate the effect of the flame (heat release) on the vorticity field. Preliminary

results show that the vortex pair is significantly altered in the presence of a flame,
and this might be due to the baroelinie torque as well as to buoyancy. This study

would shed new light upon the interaction between turbulence and heat release,

such as possible jump conditions for turbulence statistics through the flame.
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Erratum

The author would like to point out two errors that were made in the previous

issue of the Annum Research Briefs (Samaniego 1993). First, what he mistakingly

referred to as CH* emission is actually CO_ emission. Second, the presumed linear
relationship between the so-denominated CH* emission and reaction rate does not

apply. Both these errors were made before the study on CO_ emission, which

identified CO_ as the main emitter in these flames and led to a quantitative (non-

linear) relationship between CO_ emission and heat release rate (Samaniego et al.
19945).
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Fundamental mechanisms in premixed
flame propagation via vortex-flame
interactions - numerical simulations

By T. Mantel

1. Motivation and objectives

During the past few years, direct numerical simulations (DNS) have been exten-

sively used to study turbulent reacting flows in order to obtain a better understand-

ing of the interaction between a turbulent flow field and a flame front, mainly for

modeling purposes. We can cite different studies with increasing degree of com-

plexity. Three-dimensional DNS of a decaying isotropic turbulence with chemical

reactions (no heat release and constant density) have been carried out by Picart

et al. (1988), Rutland et al. (1990), E1 Tahry et al. (1991). More recently, heat

release and variable density have been taken into account by Poinsot e¢ al. (1991),

who have analyzed the interaction between a two-dimensional vortex pair and a

premixed laminar flame. Haworth & Poinsot (1992) and Trouv_ & Poinsot (1994)

focused their attention on the effects of the Lewis number by studying the inter-

action between (respectively) a two- and three-dimensional decaying homogeneous

turbulence and a premixed flame front. We can also note the work of Poinsot et

al. (1994), who performed a two-dimensional interaction between a turbulent flame
front and a cold wall.

Due to the limitations of the available computers, all the studies cited above

have been performed using a one-step irreversible reaction (Reactants ---* Products)

to describe the chemistry occurring in a flame. Consequently, some conclusions

of these studies remain questionable due to complex chemistry effects. This last

remark is supported by the work of Baum et al. (1992), who have studied the

interaction between a two-dimensional decaying isotropic turbulence and a stoi-

chiometric hydrogen-air premixed flame using the 9 species, 19 reactions scheme of

Miller et al. (1982). Despite the Lewis number (based on H2) of their simulation

being definitely less than unity, the local flamelet speed S, decreases with increas-

ing tangential strain rate, which corresponds to the behavior of a flame having a

Lewis number greater than unity (Clavin 1985, Law 1988). The Lewis number is

defined as the ratio of the thermal diffusivity (in the fresh gases) a= and of the

molecular diffusivity of the limiting species :D: Le = c_u/:D. Moreover, they find a

better correlation between the tangential strain rate and S, rather than the local

curvature and S,.

This contradicts partially the previous work of Haworth & Poinsot (1992), who

studied the same configuration using a one-step Arrhenius chemistry. In that study,

they observe that the curvature seems to be the determinant parameter controlling

the local flame structure. They notice a strong correlation between the curvature

and the local flame velocity S, for all the Lewis numbers investigated (Lc = 0.8,
J_ PAGE I_LAI'CK t'_DT F'_M_

I,I:_e_GE,, _'_-INTENTtO{_ALLY BLA_K _
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1.0, and 1.2). For the tangential strain rate, they found a significant correlation

(with Sn) for Le = 1.0.

This short discussion points out the need to verify the limit of validity of sim-

ple mechanisms able to be implemented in DNS codes. Because reduced chemical

mechanisms are available and represent a good compromise between (too) simple

mechanisms and (unreachable) full chemical schemes, it is of primary interest to

investigate the behaviors of some of these models on a configuration which exhibits

the fundamental mechanisms occurring in premixed turbulent flames and for which

experimental results are available.

The interaction between vortex pairs or ring vortices and a premixed planar flame

possesses the major features encountered in turbulent premixed combustion such as

unsteadiness, stretch, curvature, Lewis number, radiative heat losses, and complex

chemistry effects. This simplistic configuration has been previously studied both

experimentally and numerically for different purposes by several authors (Poinsot

et al. 1991, Rutland &: Ferziger 1991, Lee et al. 1993, Roberts et al. 1992-1993,

Samaniego et al. 1994-b, Driscoll et al. 1994). Some of these works have focused

their attention on the effects of radiative heat losses and of the strain on the quench-

ing of a premixed flame. The motivation of these studies was to propose an update

of the premixed turbulent combustion diagrams to clarify the limit between the

flamelet and non-flamelet combustion regimes (Poinsot et al. 1991, Roberts et al.

1993). Other studies have extracted different statistics of curvature and orientation

factors of turbulent premixed flame fronts (Lee et al. 1993).

The goal of the present study is to assess numerically the ability of single-step

and two-step chemical models to describe the main features encountered during the

interaction between a two-dimensional vortex pair and a premixed laminar flame.

This paper represents the second part of a joint experimental and numerical

project concerning vortex flame interactions performed at the Center for Turbu-

lence Research. This first part investigated by Samani_go et al. (1994-b) concerns

the experimental aspect of this project. Thus, the configuration retained in our

study corresponds to the experimental one of Samaniego et al. (1994-b). Briefly, it

concerns the interaction between a two-dimensional vortex pair generated by acous-

tic excitation and a V-shaped flame stabilized on a heated wire. In the experiment,

imaging of the light emitted by the flame and smoke visualization of the flow field

have been carried out to provide initial conditions to the simulation and eventually

data to perform quantitative comparisons between the experiment and the simula-

tion. Light emission imaging allows determination of the time history of the flame

surface area, of the global heat release, and of the distribution of the heat release

along the flame front. The characteristics of the vortex pair (circulation, position of

the vortices with respect to the flame, distance between the center of the vortices)
are obtained from smoke visualization.

In the two-step mechanism, the reaction kinetics are represented by a first chain

branching reaction A + X ---} 2X and a second chain termination reaction X + X ---* P

(Zel'dovich 1948). This mechanism has been successfully used to analyze different

features of premixed laminar flames (Lifihn 1971, Hocks et al. 1981, Seshadry and
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Peters 1983). In particular, Seshadry and Peters (1983) investigated the response of

a premixed laminar flame to an external strain. They pointed out the relative role

of the Lewis number for the reactant A and the intermediate species X. In the case

of a positive stretch, they show that the high diffusivity of the intermediate species

contributes to a decrease of the reaction rate independently of the Lewis number of

the reactant species.

This paper presents the fundamental mechanisms occurring during vortex-flame

interactions and the relative impact of the major parameters encountered in turbu-

lent premixed flames and suspected of playing a role in quenching mechanism:

- Influence of stretch is investigated by analyzing the contribution of curvature

and tangential strain on the local structure of the flame. The effect of Lewis

number on the flame response to a strained field is analyzed.

- Radiative heat losses which are suspected to be partially or totally responsible

for quenching (Poinsot et al. 1991, Roberts et al. 1993) are also investigated.

- The effect of the diffusion of radicals is studied using a two-step mechanism

in which an intermediate species is present. The parameters of the two-step

mechanism are entirely determined from physical arguments.

- Precise quantitative comparisons between the DNS and the experimental results

of Samani4go et al. (1994-b) are performed. These comparisons concern the

evolution of the minimum heat release rate found along the flame front during

the interaction and the distribution of the heat release rate along the flame front.

2. Accomplishments

2.1 The mathematical model

2.1.1 The conservation equations

The DNS code has been developed at the Center for Turbulence Research fol-

lowing the methodology of Lele (1992) and Poinsot & Lele (1992). The code fully

resolves the compressible Navier-Stokes equations using a sixth order spatial scheme

(Lele 1992) and a third order temporal scheme (Wray 1990). Due to the heat release

and the resulting gas expansion, the boundary conditions of the computational do-

main are inflow/outflow (Poinsot & Lele 1992). The transport equations solved in

the DNS code can be written

Op 0
+ = 0 (2.1)

ox#

Opui Op Ori) (2.2)+ 0x/+ 0x-- 

O----t + _ [(pE + p)u)] = (u/r/j) + _ k, Oxj ] + o - h(T - T,) (2.3)
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where

(ou, ou, 2 oukc
_o = _'\oxj + 0_, ] - 5_'-gf_k°u

,E = ! o_ + p--
2 "r 1

The transport equation for the species a is classically written:

opYo _ oy 2N + (pujYo)_ _ + w.

(2.4)

(2.5)

(2.6)

where ']7 is the diffusion of the species a flux modeled using a Fickian approxima-
tion and _bo the sink term due to chemical reaction.

Here pE represents the total energy, Q is the heat released by chemical reaction

per unit mass of fresh gas, the subscript u corresponds to the unburnt gases. (Q

and zba will be defined in detail later in this section for the one-step and two-step

chemical models.) In the energy equation, the heat losses are represented by a term

linear in temperature and a heat loss parameter h which will be described later.

The transport properties of the fluid are temperature dependent following a power
law:

-- = (2.7)
#u

where p represents the dynamic viscosity and b is a constant (here b = 0.76).

The thermal conductivity A and the molecular diffusivities 79_ for the species are

determined by assuming constant Prandtl and Schmidt numbers.

g.l.g The one-step chemical model

In this model, the chemistry is described by a single step irreversible reaction:

A(reactants) --_ P(products) (2.8)

The reaction rate of this reaction is expressed using a classical Arrhenius law. Fol-

lowing the notations of Williams (1985) the reaction rate for the deficient species

(subscript A) can be written

- o)
tbA=ApYAexp(, 1 __--(1(-__--_))) (2.9)

where

O=(T-T,,)/(Tb-Tu)is the reduced temperature;

a =(Tb -- T,,)/Tb represents the heat release parameter;

=aE,/R°Tb is the Zel'dovich number;

A =Bexp(-t_/a) is the pre-exponential factor.
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Tb and E,, represent respectively the temperature in the burnt gases and the acti-

vation energy of the reaction, R ° being the universal gas constant.
The source term Q appearing in Eq. 2.3 is

Q = (-A})tbA (2.10)

where (-A_) is the heat of reaction per unit mass of reactant.

2.1.3 The two-step chemical model

The two-step mechanism initially proposed by Zel'dovich (1948) consists of a first
order chain branching reaction and a second-order termination reaction:

A + X _ 2X (2.11)

X + X _ P (2.12)

In the first reaction, two radicals X are created while one radical is consumed

during the transformation of the reactant A into X. This initiation step is essential

because it provides radicals to initiate chain reactions. This type of reaction is

considered as thermo-neutral and has a high activation energy. Then, two radicals

recombine to form the product P during the termination step (or chain breaking).

This recombination step is highly exothermic and all the energy is release during

this step. These approximations are consistent with the simplistic description that

the more exothermic a reaction is, the smaller the activation energy.
Thus, using this description and considering equal molecular weight

(W = WA = Wx), the reaction rates for the two reactions are

RR1 = -_p YAYx exp

A2 2 2
RR2 = --_ p Y_

and for the two species,

where

a,(1 - o) )1--a(l-- (2.13)

(2.14)

/31(1 - O) )(VA = -A,p2yAyX exp 1 ---_(i'--O) (2.15)

,3,(1 - O)g-'x = A,p2YAYx exp 1 -- _1 --0)] -- 2A2p2Y_ (2.16)

A1 =_-exp - ; A2 =_-

In the energy equation, the source term due to chemical reactions is

(2.17)Q, = Z(-AH°)RRk
k=l
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where AH_ is the heat released by the k th reaction. In the present case, we consider

that the first reaction is thermo-neutral and all the heat is liberated during the
second reaction. Thus Q becomes

O=( -AH°)A: 2,,2 (2.18)

This mechanism has been utilized in various studies concerning premixed laminar

flames. Lifi£n (1971) proposed to represent a premixed laminar flame as a succession

of layers in which different transformations occur. On the unburnt gas side, a

thick preheat zone (relative to the laminar flame itself) is present. In this layer,

only diffusion and convection phenomena take place and chemical reactions do not

exist. Then, the chemistry of the hydrocarbons takes place in a thin layer in which

radicals are produced. These radicals are transported (by diffusion and convection

towards the burnt gases and by diffusion towards the fresh gases) and recombine into

products in a broader layer including the hydrocarbon consumption layer. Different

regimes were encountered by Lifi£n depending on the ratio of the frequency factors

of the two reactions A2/A1.

Hocks et al. (1981) investigated the quenching processes related to the interaction

between a premixed laminar flame and a cold wall. The authors conclude that the

two-step mechanism is able to describe the mechanism leading to flame quenching.

It appears that the behavior of the flame close to the wall is strongly dependent

on the maximum concentration of the intermediate species, which is essentially

determined by the ratio A2/A1.

Later, Seshadry _ Peters (1983) studied the structure of a planar premixed lam-

inar flame submitted to stretch. Considering a high activation energy for the first

reaction, the authors derived an asymptotic expansion for the temperature. They

found that the first order temperature can be expressed as a function of the stretch

and the Lewis numbers for the reactant and the intermediate species:

T01 = -K*{ LeALeA-- 1 +(-AH_)[1-LexI°]}Lex . (2.19)

The subscript 0 refers to the axial coordinate where Yx is maximum, I is a func-

tion always positive, K* is a non-dimensionalized stretch and (-AH_) is the non-

dimensionalized heat of reaction of the recombination step. The relation (2.19)

points out the respective roles of the diffusivities of the reactant and of the interme-

diate species. Considering only the first term on the RHS of Eq. 2.19, for positive

stretch the temperature decreases (increases) for LeA > 1 (LeA < 1). For Lea = 1,

the temperature remains constant equal to the zero order temperature, regardless

of the value of the stretch. This recovers the classical conclusions of the role played

by the Lewis number of the reactant on stretched flames (Clavin 1985, Law 1988).

The second term on the RHS of (2.19) enhances the effects of diffusivity of the

intermediate species on the dynamics of stretched flames. Since radicals are mostly

very light species, they have high diffusivities leading to Lewis numbers significantly

less than unity. Thus, in case of positive (negative) stretch, the diffusivity of the
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intermediate species tends to decrease (increase) the temperature and then the local

laminar flame speed. This result points out that even for LeA = 1, the flame can

be sensitive to the effect of stretch and exhibits locally a variation of the laminar

flame speed.

This brief description shows the ability of the two-step mechanism to describe

fundamental phenomena occurring in premixed flames in different configurations.

However, it also points out the appearance of new parameters such as the ratio of

the frequency factors A2/A1, the Lewis number for the intermediate species, the

activation energy and the heat released by each of the two-step mechanism. This

represents an infinity of combinations between these parameters. The challenge,

then, is to provide this model with a realistic set of parameters representative of

the fundamental mechanisms encountered in the kinetics of hydrocarbons.

To do so, we will focus our attention on the hydrogen-oxygen submechanism

which is hierarchically the first submechanism (followed by the oxidation of carbon

monoxyde) occurring in the chemistry of hydrocarbons (Glassman 1987, Westbrook

and Dryer 1984). In this submechanism, the H atoms play a determining role

because they provide a major source of radicals in the branching reactions of the

oxidation of H2. Furthermore, the concentration of H radical directly affects the

overall heat release and, consequently, the reaction rate (Westbrook and Dryer

1984). In the H2 - O2 submechanism, one of the most important chain branchings
is

H + 02 _ OH + O. (2.20)

In the chain branching reaction (2.20), one H atom is consumed whereas radicals

O and hydroxyl OH are produced and contribute to further branching reactions in
which H radicals are created such as

O+H2 -* OH +H

OH + H2 _ H20 + H

OH + OH --* H20 + O

The reaction 2.20 is endothermic of 17 kcal/mol and has an activation energy of

14.4 kcal/mol (Yu et al. 1994).

Then, radicals are transformed to form product and liberate energy in chain

breaking reaction. In the high temperature regime, a principal termination reaction

is

H + OH + M _ H20 + M, (2.21)

where M is a third body. During this step, radicals H and OH recombine to

form products of combustion (here water). This reaction is highly exothermic (120

kcal/mol) and has a zero activation energy.

The rate coefficients for these two reactions are reported in Table 1.

From these considerations, all the parameters appearing in the two-step mecha-

nism 2.11 and 2.12 can be estimated from the rate coefficients reported in Table 1.

The ratio of the frequency factors A2/A1 of reactions 2.11 and 2.12 can be deter-

mined from the values of B1 and 132 and from the temperature of the burnt gases.
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k=BTne-EA/ROT

B n EA

reaction (cm 3 tool -1 s- 1) (kJ/mol) ref

HO2--,OH+O 8.3 1013 0

H+OH+M_H20+M 1.6 1022 -2

60.3 Yu et al. 1994

0 Miller and Bowman 1984

Table 1. Reacting mechanism, rate coefficients

As we mentioned previously, the tI atoms play a determinant role in the chemistry

of hydrocarbons. Thus, we will identify the intermediate species X of the two-step

mechanism to the H atom which leads to a Lewis number for X, Lex = 0.15. The

activation energies of the two-step mechanism are those of the reactions 2.10 and

2.11 reported in Table 1.

2.1.4 Initialization of the two-step mechanism

To initialize the one-dimensional laminar flame using the two-step mechanism, the

assumption of quasisteady state for the intermediate species is considered. Thus

from Eq. 2.16, the concentration of the radical is directly related to the concentra-

tion of the species A and to the temperature:

Yx - 2 A2 YA exp 1 --_((fSS_) (2.22)

We note that using Eq. 2.22 in Eq. 2.15 makes the two-step mechanism (under

the assumption of quasi steady state for the intermediate species) reduce to the

one-step second-order mechanism,

A + A ---* P. (2.23)

2.1.5 The radiative heat loss model

The radiative heat losses are taken into account in the energy equation by a

linear term in temperature. The heat loss parameter h appearing in Eq. 2.3 comes

from the asymptotic analysis of Williams (1985-pp 271-276). He considers the

asymptotic structure of a one-dimensional premixed laminar flame submitted to

radiation or conduction to a wall. Considering constant properties for the fluid,

Williams proposes

l /S ad\2

h =--pr2AI _'L _ (2.24)

where I is a constant and Pr a Prandtl number, uu represents the molecular viscosity

in the fresh gases and S_ d the adiabatic laminar flame speed.
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2.1.6 Configuration

The configuration retained in this study concerns the interaction between a two-

dimensional vortex pair and a planar premixed laminar flame. This geometry cor-

responds to the experimental device of Samaniego et al. (1994). In the experiment,

a mixture of methane or propane and air is introduced in a vertical channel of

square cross section. The flame is stabilized on a heated wire and exhibits a two-

dimensional V-shape. On the left side of the duct, a vortex pair is generated by

acoustic excitation and interacts with the flame (see Fig. 1). Then, during the main

duration of the interaction, the flow keeps its two-dimensionality. The DNS of all the

experimental domain cannot be considered because of the high computational time

and memory requirement. Nevertheless, the second flame (on the right of Fig. 1)

does not play any significant role during the early stages of the interaction and

allows us to consider only the left side of the domain where the interaction occurs

(Sammai_go et al. 1994). Moreover, one can demonstrate that due to the Gallilean

invariance of the Navier-Stokes equations, the problem is equivalent to considering

a sub-domain related to the frame of reference of the flame and convected by the
mean flow field.

The characteristics of the vortices (circulation, size, distance with respect to the

flame, angle of impingement) are obtained from the experiment and are reported
0 2

in Table 2. Here, the Damk6hler is defined by Da = sS L /VDa, and the laminar

flame thickness by 3I = a,/S°L • Three vortex pairs having different circulations and

sizes are studied. For each interaction, a methane-air flame and a propane-air flame

are investigated in order to study the effects of the Lewis number. The methane-

air flame with an equivalence ratio of 0.55 exhibits a Lewis number equal to unity

whereas the propane-air flame with an equivalence ratio of 0.50 has a Lewis number

of 1.8. The parameters of the different cases analyzed in this study are reported in
Table 2.

Since the structure of the vortex has not been precisely determined in the exper-

iment, it is difficult to locate our study in the diagram of flame-vortex interactions

proposed by Poinsot et al. (1991). Nevertheless, from the PIV measurements of

Driscoll et al. (1994), the maximum tangential velocity of the vortices u_ ax and
the radius of the vortex core a can be estimated. Driscoll et al. determined that

2 '_ ur_ax/VD _ 6 and 1/2 < a/s < 1/6, where VD is the displacement velocity of

the vortex pair and s the distance separating the center of the vortices. Thus, we

can roughly locate our study in the quenching region of the diagram represented in
Fig. 2.

The temperature jump across the flame front is set exactly equal to 5, leading to
the heat release parameter _ = 0.8.

Vortex pairs can be easily generated numerically, and several authors have pro-

posed analytical solutions that satisfy the Navier-Stokes equations. Among these

solutions, one of the most used in numerical simulations are the Oseen vortex (Os-

een 1911) and the vortex "hat" used by Rutland (1989). The expression for the

circulation F, the vorticity w_, and the tangential velocity u0 are expressed in Table

3 in function of the radial coordinate r, the vortex strength _2, and the core radius
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FIGURE 1. Schematic description of the configuration
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Le

1.0 2

1.8 2

case

1

vortex 1 vortex 2

F1/_6I ml r2/s_61 R_2

3286 4600 3569 5000

5657 8000 6686 9333

10286 14667 11314 16000

3286 4600 3571 5000

5714 8000 6667 9333

10476 14667 11428 16000

25.7

25.7

40.5

28.6

28.6

D/6! VD/SL Da

104.8 14.9 1.9

104.8 38.1 0.53

104.8 66.8 0.3

104.8 13.5 2.91

104.8 34.5 0.81

104.8 61.0 0.45

Table 2. Dimensionless parameters for each configuration

vortex "hat"

r2
V = 27r_ _2 exp(--_-_)

(
_z = a"2 - -- _,exp,--o_2,._,

q2r r2

.. = exp(-2--J)

OBeen vortex

r 2

r = exp(--_))

q2 r 2

wz ------ exp (--_-_)Tra2

r 2

k9 (1 -- exp(-- _---_1)U8 _ _r_r

Table 3. Circulation F, vorticity wz, and tangential velocity u0 for the vortex "hat"
and the Oseen vortex

_r. The distribution of these quantities for the Oseen vortex and for the vortex

"hat" are schematically represented in Fig. 3.

Because its compact structure allows us to avoid numerical difficulties related to

the boundaries of the domain (and then to reduce the size of the computational

box), the vortex "hat" has been utilized in several studies (Rutland & Ferziger

1991, Poinsot et al. 1991). However, the vortex "hat" exhibits a rapid decrease of

the tangential velocity and an inversion of the sign of the vorticity for 7" = v_a,

which is not representative of real vortices. During the interaction with the flame,

this opposite vorticity generates undesirable stretch, leading to an artificial increase

of the flame length. To avoid these problems and to perform future quantitative

comparison with the experimental results of Samani_go et al. (1994), the Oseen
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FIGURE 3. Characteristics of the vortices a) circulation F, b) vorticity wz, c)

tangential velocity us; -- : Oseen vortex; ........ : "hat vortex".

vortex is utilized in all our simulations.

For these two-dimensional simulations, the computational domain is typically

composed by 300000 grid points (750 x 400).

2.1.7 Remarks

In the simulations, some parameters have to be treated carefully in order to

perform quantitative comparisons with the experiment. The interaction between the

vortex pair and the flame can be entirely defined by the following set of parameters:

the ratio between the displacement velocity of the vortex pair and the laminar

flame speed VD/SL;

the ratio between the distance separating the center of the vortices and the

laminar flame thickness s/by;

the distance D separating the vortex pair and the flame;

the temperature jump across the flame front represented by the heat release

parameter a;

the activation energy of the chemical reaction(s) represented by the Zel'dovieh

number(s) _(k);

the ratio between the frequency factors A2/A1 for the two-step mechanism.
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Although it sets the laminar flame velocity, the frequency factor A for the one-step

chemical model (and A1 for the two-step mechanism) is not a determining parameter

in this study. Indeed, the laminar flame velocity can be chosen arbitrarily as long as

the ratio VD/SL is appropriate and the effects related to the compressibility of the

flow are avoided. The only restriction is to limit the Mach number, based on the

maximum velocity present in the flow field, to be below a critical value (i.e. 0.2).

This restriction has an important practical impact, because it considerably reduces

the computational time of the simulations.

As we have already mentioned, the experiment allows us to determine the individ-

ual circulation of the vortices and the distance separating the center of the vortices,

the radius of the viscous core a and the exact distribution of the tangential velocity

being unknown. However, the information provided by the experiment is enough

to give a good representation of the interaction. Vortex pairs propagate by mutual

induction, and, for point vortices, the displacement velocity of the ensemble is de-

fined by the circulation of the vortices F and the distance separating the vortices s

(Prandtl & Tietjens 1934):
F

VD = -- (2.25)
27rs

Although in the experiment the vortex cores definitely have a finite radius, some

simulations performed on simple cases show that as long as the circulation of each

of the vortices is conserved and the radius of the viscous cores is restricted to

0 < a/s < 1/2, the dynamics of the interaction and the strain field applied to the

flame are the same. Thus, in all the simulations presented here, the ratio a/s is set

to 1/3.

In other words, for given circulation F and distance s, vortex flame interactions

can be represented either by point vortices or by finite viscous core radius and lead

to the same conclusions. This last point has a very important impact on the elabo-

ration of combustion diagrams for vortex flame interactions proposed by Poinsot et

al. (1991) usually defined by ur_ax/SL and a/6 I. Thus, using the characteristics of

the Oseen vortex reported on Table 3, a vortex flame interaction can be represented

in the diagram by an infinity of points related by the relation:

(2.26)

where Rev = F/u is the Reynolds number of the vortex. Here, we propose to use

the parameters VD/SL and s/_f to classify vortex flame interactions in the diagram

of Poinsot et al. (1991). Note that, since the ratios u'_aX/VD and a/s in Poinsot et

al. (1991) and Roberts et al. (1993) are not far from unity, the conclusions of their

study are still valid and are not contradicted by our comments.

2.1.8 Post processing

The experimental results obtained by Samaniego et al. (1994) concern essentially

the CH emission of the flame during the interaction. The CH emission of the flame

is directly related to the heat release rate of the flame, as shown by the numerical
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analysis of Samani_go (1994). Samaniego et al. relate the light emission of a

strained laminar methane-air flame ICH4 and the light emission of a strained laminar
propane-air flame IC,H8 to the heat release rate RR according to the following power
laws:

RR =/o.a7 (2.27)CH_

RR = /0.63C3H8 (2.28)

Thus, quantitative comparisons will be performed accurately both for methane-air

and propane-air flames.

In this section, local characteristics of the flame such as the tangential strain, the
curvature, the normal towards the fresh gases, and the flame length E are obtained

at the flame front location YA/YA_ = 0.2 where YA represents the mass fraction of
the reactant A.

P.._ Results

In the first part of this section, the results are presented for simulations performed

with the one-step chemical model. In this model, the heat release parameter a is

set to 0.8 and the Zel'dovich number _ to 8.0, corresponding to an a_:tivation energy
of 30 kcal/mol.

Before discussing in more detail the physical effects affecting the local structure

of the flame during the interaction, the evolution in time of the reduced flame length
E* = E/E0 for Le = 1.0 and the three interactions shown in Table 2 are presented

in Fig. 4.

The comparison with the experimental restLlts of Samaniego el al. (1994) points
out that the dynamics of the interactions is very well reproduced by the simula-

tion. This enhances the reasonable approximations made concerning the internal
structure of the vortices and their initialization.
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Fig. 5 describes the time evolution of the minimum of the heat release rate along

the flame front for the different interactions presented in Table 2. For Le = 1.0

(Fig. 5-a), the agreement is poor between the simulations and the experiment even

if the sensitivity to the DamkShler number is qualitatively represented by the DNS.

For Le = 1.8 (corresponding to the propane-air flame), the simulations seem to well

reproduce the decrease of the minimum heat release rate for the three interactions,

especially those corresponding to low DamkShler numbers.

The same comments can be made concerning the distribution of the heat release

rate along the flame front where the simulations greatly overestimate the heat release

for Le = 1.0 (see Fig. 6), whereas the agreement is notably better for Le = 1.8 (see

Fig. 7).

For Le = 1.8, the Lewis number effect alone can explain the decrease of the heat
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release rate during the interaction and seems to be the parameter controlling the

local structure of the flame. However, the simulations presented here are performed
for an adiabatic flame using a one-step chemical model. Thus, phenomena such

as radiative heat losses and complex chemistry effects are not taken into account

and could have a significant impact on the interaction, which could explain the

discrepancies found between the DNS and the experiment, especially for Le = 1.0.

In the following sections, the contributions of the major physical effects suspected

of playing a role in the mechanism of extinction (stretch, heat losses, complex
chemistry) and responsible for the decrease of the heat release rate observed during

the interaction will be analyzed in detail.

_._.I Anal_tsis of the stretch

In the configuration studied here, the flame is subjected to curvature and straining
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effects, causing a modification of the flame length. These changes imposed on the
fiame can be estimated from the flame stretch n. From Williams (1985), n is defined

by the rate of change of a Lagrangian flame surface element A:

1 dA
.... (2.29)

A dt

This expression can be rewritten in terms of flame stretch and flame curvature

(Matalon 1983, Candel & Poinsot 1990):

= nn : Vw + V.w (2.30)

where n is the unit vector normal to the flame surface pointing towards the fresh

gases: Ve
n - (2.31)

IVcl
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and w is the local velocity of the flame surface. In indicial notation,

nn : Vw = ninjOwi/Oxj. The local flame front velocity can be decomposed in

a convective velocity in the fresh gases u and a displacement speed Sd (see Poinsot
et al. 1992). Thus, expression 2.30 becomes:

Sd

= V,.u- -_ (2.32)

where Vt.u represents the strain contribution and Sd/T¢ the curvature term (7¢ is

the local radius of curvature of the flame front).

As it has been shown by Poinsot et al. (1992), the displacement speed Sd is

not equal to the laminar flame speed SL and can be significantly different. The

displacement speed can be exactly determined by solving the equation for an iso-

contour c = co (which is nothing but the G-equation described in Kerstein et al.

1988) as it has been proposed by Trouv6 & Poinsot (1994). The equation for an
iso-scalar surface c = co is written:

0c

+ w.Vc = 0 (2.33)

Utilizing Eq. 2.30 in Eq. 2.32 and noting that Sd = w.n - u.n, an expression for
Sd can be derived:

Sd - I Vc I + u.Vc (2.34)

Fig. 8 represents the relative contribution of strain and curvature on the stretch

along the flame front for case 3 of Table 2 at the end of the interaction (t = 3.3ms).

One sees that the maximum stretch does not appear on the trajectory described

by the ensemble as it could be expected. The maximum of stretch occurs on both

sides of this trajectory corresponding to each of the vortices. This feature was also

observed by Driscoll et al. (1994) in their PIV measurements.

As expected due to the size of the vortex pair compared to the flame thickness,

the contribution of the curvature on the global stretch is very weak (about a few

percent) compared to the contribution of the tangential strain, especially in regions
where a significant decrease of the heat release rate is observed. This corroborates

the conclusions of Driscoll et al. (1994), who performed a measurement of the

velocity field during vortex-flame interaction using a PIV technique. We can also

see that the levels of strain rate reached during the interaction are extremely high

compared to the extinction strain rate measured for steady counterflowing premixed

flames (Law et al. 1986, Tsuji & Yamaoka 1982) and for the vortex-flame interaction

of DriscoU et al. (1994). In Tsuji & Yamaoka (1982), the extinction strain rate of

a methane-air flame with an equivalence ratio of 0.52 is only 42s -1 . During the

interaction of ring vortices and a premixed methane-air flame with an equivalence

ratio of 0.55, the extinction strain rate measured by Driscoll et al. (1994) is 358 -1

and corresponds to a Karlovitz number of 0.12. In the present interactions, the

Karlovitz number reaches higher values up to 3.0 (see Fig. 9).
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Apparently, the configuration retained in our study exhibits a very resistant flame

compared to the steady situations of Tsuji & Yamaoka (1982) and particularly

compared to the ring vortices-flame interaction of DriscoU et al. (1994). In this last

study, local quenching is clearly observed during the interaction. On the contrary in

our study (both in the experiment and in the simulations), all the cases investigated

here are far from the quenching limit encountered by Roberts et al. (1993) and

by Driscoll et al. (1994). In all our simulations, the minimum heat release rate

never decreases under 30% of the heat release rate corresponding to an unstrained

laminar flame (see Fig. 5). Moreover, we observe that it is more difficult to quench a

methane-air flame having a Lewis number of unity rather than a propane-air flame

with Le = 1.8. These conclusions are in accordance with the classical analytical

results concerning the theory of stretched flames (Clavin & Williams 1982, Clavin

1985, Law 1988) and also with the experimental results of Law et al. (1986), but

are in contradiction with the observations of Roberts et al. (1993).

For Le = 1.0, we observe a good correlation between the strain rate and the

local flame speed with a slight negative slope x (see Fig. 10-a). This is due to the

compression of the reaction zone by the local extensive strain. This observation

is consistent with the results of Haworth & Poinsot (1992) and is illustrated in

Fig. 11, which shows the scatter plot of the thermal flame thickness 6_. = _T/6_. ns

(based on the maximum temperature gradient) versus the local flame speed. A very

good correlation is found between 6_. and S_. and clearly shows a compression of

the flame (down to 70% for the higher strain rates) corresponding to low values of

S_. Conversely, a thickening of the flame (up to 10%) corresponds to higher flame

velocities and regions of compression of the flame.

For Le = 1.8 (see Fig.10-b), the correlation between S_ and Ka is less obvious

even if we observe a clear decrease of the local flamelet velocity for positive stretch

as it can be expected for strained laminar flame having a Lewis number greater

than unity.

2.2.2 Effect of the radiative heat losses

Radiative heat losses occurring in the burnt gases of a premixed laminar flame

produce a natural decay of the temperature and have been suspected of being par-

tially or totally responsible for quenching during vortex-flame interaction (Poinsot

et al. 1991, Roberts et al. 1993). In their numerical study (and using a one-step

mechanism for the chemistry), Poinsot et al. (1991) concluded that stretch alone

cannot be responsible for quenching. Local extinction occurs only when stretch and

radiative heat losses present in the burnt gases are combined. The authors observed

that during the quenching process, pockets of fresh gases can be present in the burnt

gases and cannot reignite due to a too low temperature. However, in order to ob-

tain such behavior, very high (and unrealistic) heat losses have been imposed to the

flame. In comparison, we will see that the heat losses measured by Roberts et al.

(1993) and by Samaniego et al. (1994) are lower by an order of magnitude than in

1 The local flame speed is calculated by integrating the reaction rate in a direction normal to the

-- 1 f:_oo_i)d nflame front: SL --



64 T. Mantel

1200

i000

8OO

600

400

2O0

0

-200

-400

1 T r I

I0 20 30 40 50

curvHi_alxwAma[mm]

FIGURE 8.

Le = 10 ;--

Contribution of tangential strain and curvature on stretch, Case 3

: total stretch,---- : curvature,- ..... : tangential strain

3

2.5

J
m

m

_1.5

0.5

0

I it I I I

i

i

i

,: /
: /

; /
; /

/ #

/ •

tt jg

oo •

0 5 15I0 20

dine [nls]

FIGURE 9. Evolution in time of the Karlovitz number for Le = 1.0

--: case 1, .... : case 2, ...... : case 3

Poinsot et al. (1991). Since in their simulations a single-step mechanism has been

used, it is still not clear if quenching in real flames is due to combined stretch and

heat loss effects, or to combined stretch and complex chemistry effects.

Here, in order to quantify the impact of realistic heat losses on the distribution of

the reaction rate along the flame front, a simulation corresponding to the interaction

2 of Table 2 for Le = 1.0 is performed. Different levels of heat loss corresponding

to the experiments of Roberts et al. (1993) and Samaniego et al. (1994) and to

the numerical study of Poinsot et al. (1991) are investigated. Before discussing the

results of these simulations, the quenching limit of a one-dimensional non-adiabatic
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flame is investigated. This analysis should allow us to recover the asymptotic solu-

tion of Williams (1985), who proposes an analytical relation between the laminar
flame velocity and the heat loss parameter. This relation is expressed (Williams

1985 p. 275):

where _ aa= SL/S L . From this relation, the quenching limit corresponds to I = 1/e
leading to a reduced laminar burning velocity _ = 1/v_.

Fig. 12 shows the evolution of the burning velocity ratio _ versus the heat loss pa-

rameter I given by the simulation and by the relation 2.34 for two different Zel'dovich

numbers (/3 = 8 and/3 = 16). A very good agreement is found between the simu-

lations and the asymptotic theory of Williams, especially for very large activation
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In the simulation corresponding to the case 2 for Le = 1.0, various values for the

heat loss parameter l are investigated. The case l = 0 corresponds to the adiabatic

case, 1 = 0.008 and l = 0.027 to the heat losses estimated from the experiment

of Samani4go et al. (1994) and from Roberts et al. (1993). The case 1 = 0.3

represents the heat losses used by Poinsot et al. (1991). According to Fig. 12, only

a negligible effect of radiative heat losses is expected to be found in Samani4go et

al. (1994) and in Roberts et al. (1992). Nevertheless, the effect should be much

more pronounced for the heat losses of Poinsot et al. (1991) which are close to the
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quenching limit observed for a one-dimensional unstrained non-adiabatic laminar

flame. Fig. 13 represents the time history of the minimum heat release encountered

along the flame front. As expected, the heat losses found in the two experiments

have a negligible effect on the evolution of the heat release rate. On the other hand,

very intense heat losses (more representative of conductive heat losses to a wall) can

lead to a dramatic decrease of the heat release and to probable local quenching even

if the computation does not go sufficiently far in the interaction to clearly show it.

These simulations are performed using a one-step chemical model and do not

take into account combined effects of radiative heat losses and complex chemistry.

These combined effects can have a significant influence on the flame structure when

the flame is close to its flammability limits, as illustrated by the numerical study

of Egolfopoulos (1994). The author investigates the response of a lean methane-air

flame submitted to stretch and radiative heat losses using the GRI (Gaz Research

Institute) mechanism. For a laminar methane-air flame with an equivalence ratio

of 0.55, Fig. 14 shows the evolution of the reduced heat release (_/Q_a as a function

of the tangential strain. Results for the adiabatic and non-adiabatic cases are

presented. We can observe that the heat release rate is strongly influenced by the

heat losses for the unstrained laminar flame and decreases down to 0.83. For high

values of the strain (typically those encountered in our configuration), the effect

of the radiative heat losses compared to the effect of the strain on the decrease of

(_/(_d is much weaker.

2.2.3 Role of an intermediate species in strained laminar flame_

The chemistry of simple hydrocarbons such as methane can be described by full

mechanisms available in the literature (Westbrook & Dryer 1984, Miller & Bowman

1989). The coupling of these mechanisms with a DNS code has been performed

by Bantu et al. (1992) but leads to extremely high computational time. As an
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alternate possibility, reduced chemical schemes for the combustion of methane-air

flames (Peters & Williams 1987) and for propane-air flames as well (Kennel et al.

1990) exist and can be used in DNS codes.

Here, a two-step mechanism described by a first chain branching step A+X ---* 2X

and a second chain terminating step X + X _ P is utilized to analyze the structure

of the flame during its interaction with a vortex pair.

In the asymptotic analysis of a premixed laminar flame submitted to stretch,

Seshadry & Peters 1983 have put into evidence the role played by the radical species

on the flame structure (see §2.1.3).

Since the Lewis number for the intermediate species is less than unity (due to

the high diffusivity of the radicals), positive stretch will generate a high diffusion of

radicals out of the reaction zone. Thus, the concentration of radicals in the reaction

zone will decrease, leading to a lower heat release rate (because of the quadratic

dependence on Yx of the heat release rate, see Eq. 2.14). This behavior is well

reproduced by the asymptotic expression for the temperature given by Eq. 2.19.

From the discussion presented in §2.1.3, the set of parameters for the two-step

mechanism can entirely be determined by considering the data presented in Table

1 and the temperature of the burnt gases (in the experiment Tb = 1500K). This

leads to A_/A] = 0.53, 81 = 4.83, 82 = 0, and Lex = 0.15 (here using the Lewis

number for the H atom).

Fig.15 shows the evolution in time of the minimum heat release rate during the

interactions for Le = 1.0 and Le = 1.8 for the cases 1 and 3 of Table 2. Here, the

decrease of Q is very well reproduced by the two-step mechanism, regardless of the

DamkShler number. This is particularly interesting for the methane-air flame cases

for which the one-step mechanism poorly describes the decrease of Q (see Fig. 5-a).
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The coherent behavior of the two-step mechanism is confirmed by the distribu-

tion of Q along the flame front (see Figs. 16 and 17). For Le = 1.0, the agreement

between the DNS and the experiment is excellent and is greatly improved com-

pared to the results obtained with the one-step mechanism (see Fig. 6). A minor

quantitative discrepancy exists in regions of the flame where curvature effects axe

non-negligible although the tendencies are well reproduced.

The same comment can be made for Le = 1.8, where a good agreement is observed

for the two Damk6hler numbers studied here (Figs. 15-b and 17). However, the

two-step mechanism does not significantly improve the results, which are already

satisfactory using the one-step model (see Fig.7).

Fig. 18 shows the scatter plot of the local flame speed versus the Karlovitz number.

Regions of the flame submitted to positive stretch exhibits a decrease of the local
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flame speed as it is observed for stretched flames having a Lewis number greater

than unity. As a consequence, a flame having a Lewis number of unity described

with a two-step mechanism behaves like a laminar flame having an apparent Lewis
number greater than unity. This particular point provides evidence for the existence

of a critical Lewis number Lec smaller than unity for which moderate stretch does
not affect the flame structure.

According to these observations, the concentration of radicals seems to be the key

parameter which controls the local flame structure and quenching mechanism. This

has been shown by the asymptotic analysis on the structure of strained premixed

flames by Seshadry & Peters (1983) and is confirmed in the present study. Moreover,
the quenching of a premixed laminar flame propagating toward a cold wall is also

strongly dependent on the concentration of radicals (Hocks et al. 1981).

However, it is difficult to separate which parameter of the two-step mechanism
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is predominant (ratio A2/A1, Lewis number for the intermediate species, activation

energy for the first and second step). For instance, to describe the flame quenching

at a wall, Hocks et al. (1981) have considered a low recombination regime, a high

activation energy for the first reaction, and equal diffusivities of heat and mass

(A2/Aa = 5 10 -4, /31 = 8.5, /32 = 0, Lex = 1.0). This choice has been made

arbitrarily by the authors and justified by comparing the concentration of radicals

given by the two-step mechanism to the concentration of intermediate species such

as OH, H, and O given by complex chemistry calculations of the same configuration.

Here, the choice of the set of parameters is based on physical arguments (justified

in §2.1.3), which seems to be reasonable if we consider the agreement between the

DNS and the experiment for all the cases studied here. The two-step mechanism

shows its ability to describe vortex-flame interactions on a large range of Damk6hler

number (0.3 to 2.9).
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FIGURE 18. Scatter plot of local flame speed versus the Karlovitz number.

Conclusion

Direct numerical simulations of flame vortex interactions are performed using

one-step and two-step chemical models.

Simulations performed with the one-step mechanism exhibit a strong disagree-

ment between the DNS and the experiment for all the interactions with Le = 1.0.

The simulations greatly overestimate the distribution of the heat release rate along

the flame front during the interaction. On the contrary, for Le = 1.8, the agree-

ment between the simulations and the experimental results is satisfactory for all the

interactions corresponding to large range of DamkShler numbers (0.3 to 2.9).

The analysis of the stretch shows a negligible contribution of the curvature due

to the large size of the vortex pair compared to the laminar flame thickness. The

tangential strain generated by the vortices is responsible for the stretch felt by
the flame.

Radiative heat losses representative of those encountered in the experiment have

no effect on the local flame structure. However, tremendous heat losses (more

representative of heat losses by conduction to a cold wall) have a dramatic effect

on the heat release and lead to local quenching.

For the two-step mechanism, the set of parameters is entirely determined by con-

sidering the rate coefficients of the chain branching reaction H + 02 ---* OH + O

and the terminating reaction H+OH+M _ H20+M, which are the most impor-

tant chain branching and chain breaking reactions of the H2 - 02 submechanism

occurring in the chemistry of hydrocarbons. All the simulations performed with

this model (for both Le = 1.0 and Le = 1.8) lead to very good agreement with

the experimental results. During the interaction between the flame and the vor-

tex pair, the concentration of radicals seems to be the key parameter controlling

the local structure and the quenching mechanism.
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As a consequence, it appears that the two-step mechanism with the set of param-
eters chosen here is sufllcient to describe all the interactions performed experimen-

tally by Samani6go et al. (1994-b).
Since most of the phenomena encountered in these interactions are also present

in turbulent premixed flames, it is tempting to extrapolate these conclusions to a

general description of turbulent premixed flames.
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Triple flames and flame stabilization

By J. E. Broadwell

1. Motivation and objectives

It is now well established that when turbulent jet flames are lifted, combustion

begins, i.e., the flame is stabilized, at an axial station where the fuel and air are

partially pre-mixed. One might expect, therefore, that the beginning of the com-

bustion zone would be a triple flame. Such flames are described by G. R. Ruetsch,

1994. However, the recent experiments of Schefer et al. 1994a,b, together with the

earlier work of Seitzman et al. 1990, provide data that are, so far, difficult to rec-

oncile with the presence of triple flames. In particular, laser images of CH and OH,

marking combustion zones, do not exhibit shapes typical of triple flames, and, more

significantly, the lifted flame appears to have a propagation speed that is an order of

magnitude higher than the laminar flame speed. The speed of triple flames studied

thus far exceeds the laminar value by a factor less than two. The objective of the

present task is the resolution of this apparent conflict between the experiments and

the triple flame characteristics, and the clarification of the mechanisms controlling

flame stability.

2. Accomplishments

So fax, several possible explanations of the difficulty have been identified and are

being investigated. These include:

(1) The resolution achieved in the experiments: is it sufficient to exhibit the structure

of a triple flame?

(2) Is the flow field in the neighborhood of the stabilization point sufficiently close

to that for which triple flames are known to exist?

(3) Can triple flames be generated that have higher propagation speeds?

(4) Does the unsteadiness of the laboratory flames introduce an essential new element

into the problem?

(5) Are flame ignition limits essential in the calculation of triple flames that more

closely resemble lifted flames?

Investigation of these points is underway.

3. Future work

The work on this project is in collaboration with G. R. Ruetsch, who is inves-

tigating structure of triple flames by direct numerical solution of the appropriate

equations. Dr. Robert Schefer of the Combustion Research Facility, Sandia National

Laboratories, Livermore, has generously agreed to provide more detailed data con-

cerning his lifted flames and to discuss his plans for further experiments in this

area.
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Analysis of the results from these two projects should lead to a conclusion con-

cerning the relevance of triple flames to the subject of flame stabilization.
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Flame propagation under
partially-premixed conditions

By G. R. Ruetsch

1. Motivation and objectives

In combustion, flames are generally categorized according to the distribution of

reactants in the flow. For homogeneous mixtures of fuel and oxidizer, flames are

designated as premixed, and when the fuel and oxidizer are initially separated, non-

premixed or diffusion flames arise. There are many instances when flames clearly

fall in one of these two categories, such as premixed flames in internal combustion

engines and diffusion flames during later stages of combustion in diesel engines.

There are, however, many practical situations where flames cannot be consid-

ered as purely premixed or non-premixed. One important phenomenon that occurs

in such partially-premixed conditions concerns how diffusion flames are stabilized

in mixing layers. Through the imbalance between chemical source and diffusion,

premixed flames can propagate into unburned regions, whereas diffusion flames by

themselves have no such propagation mechanism. Therefore, some degree of pre-

mixing is necessary for diffusion flame stabilization. Lifi£n 1994 shows that there

are two possibilities for stabilization of diffusion flames in laminar mixing layers.

The flame can either be stabilized near the splitter plate or stabilized farther down-

stream, as a lifted flame. In the former case the flame is anchored in the wake of

the splitter plate, and the velocity deficit of the wake and heat conduction to the

plate play important roles in stabilization and must be taken into account. These

anchored flames have been examined by Veynante et al. 1994. In the case of the

lifted flame these mechanisms are absent, and laminar flame stabilization is achieved

through "triple flames," i.e. a flame composed of two premixed flames, one fuel rich

and the other lean, and a trailing diffusion flame. The two premixed wings provide

the ability to propagate, and the diffusion wing provides an anchor for the trailing
diffusion flame.

In addition to regions where diffusion flame stabilization takes place, partially-

premixed conditions also exist during the ignition process in nonpremixed systems.

Numerical simulations by R6veillon et al. 1994 of the ignition process in a weakly

stirred mixture of fuel and oxidizer show that triple flames propagate along lines of

stoichiometric mixture fraction throughout the fluid. In addition, Peters 1994 notes

that NOx emissions are likely to be large in such transient cases, and therefore

an understanding of triple flames can provide beneficial information concerning

pollutant formation.

One of the first observations of triple flames was made by Phillips 1965, where he

investigated a triple flame propagating in a methane mixing layer. More recently,

Kioni et al. 1993 have analyzed triple flames both experimentally and numerically.

In their numerical approach, they first develop a model for triple flames in a coun-

terflow geometry under the assumption of zero heat release and then solve these
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equations numerically to analyze the structure and propagation of these flames.

There have also been numerous analytical studies of triple flames under various

assumptions by Dold 1989, Dold et al. 1991, and Hartley and Dold 1991.

This study concentrates on developing a better understanding of triple flames.

More precisely, we relax the assumption of zero heat release which has been used

in many of the previously mentioned analytical studies. The effects of heat release

in turbulent mixing layers have been previously studied by McMurtry et al. 1989,

where the influence of heat release on the large-scale structures, entrainment, and

other properties of shear layers has been analyzed. However, such simulations are

temporal and do not address the issues of stabilization and flame propagation. In

order to investigate the role heat release plays in flame propagation in partially-

premixed combustion, we return to a simple flow field and investigate the behavior
of flames in a laminar environment.

1.1 Numerical simulation and flow configuration

We use direct numerical simulations to solve the fully-compressible Navier-Stokes

equations in this investigation. The simulation used is a two-dimensional version

of the code previously developed by Trouve 1991. This code uses the high-order

compact finite difference scheme of Lele 1992 for spatial differentiation, the third

order Runge-Kutta scheme of Wray for time advancement, and the Navier-Stokes

characteristic boundary conditions method of Poinsot and Lele 1992. Below we

summarize some of the important features and assumptions of the code relevant to

this work; for further details on the numerical method readers are referred to Lele

1992 and Poinsot and Lele 1992.

The chemical scheme we consider is represented by a one-step global reaction
between a fuel and oxidizer:

F+O----_P

where we have assumed unity stoichiometric coefficients for simplicity. The reaction

rate behaves according to the Arrhenius form:

dJ = KpYFPYoexp (-_-_)

where p is the density, T_c is the activation temperature, K is the pre-exponential

factor, and YF and Yo are the fuel and oxidizer mass fractions. Following Williams

1986, we can write this reaction rate as

where the reduced pre-exponential factor(A), heat release parameter(a), Zel'dovich

number(/3), and reduced temperature(0) are defined by:

h = K exp(-/3/a); a = TI - To :3 = aTa---5" O - T - To
T! ' T! ' TI- To
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FIGURE ]-. Computational domain used in the simulations.

with Tf being the adiabatic flame temperature and To taken in the ambient flow.

In this study we hold the Zel'dovich number constant at/3 = 8 and use heat release

parameters of a = 0.5, 2/3, 0.75, and 0.8.

The transport coefficients in the simulations are temperature dependent. This

temperature dependence is expressed through the molecular viscosity, p, given by:

with a = 0.76. The temperature dependence of the thermal conductivity, A, and

the mass diffusivities, :Dk, is obtained by requiring the Lewis and Prandtl numbers

to be constant:

Lek - _--_- • pr = _--_ ,
-- p_)kCp '

where k = F, O refers to either the fuel or or oxidizer species. We assume unity

Lewis numbers throughout this study.

We solve the compressible Navier-Stokes equations in a two-dimensional domain

depicted in Fig. 1. At the boundaries we use an inflow boundary condition on the left

and nearly-perfect reflective boundary conditions, required to avoid pressure drift,

at the outflow and sides. Although the inflow conditions are prescribed, values can
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FIGURE 2. Response of a planar premixed flame to a mixture fraction gradient.
The first row in the time sequence shows the premixed flame in a steady-state
situation. As the mixture fraction gradient reaches the flame, the structure and

velocity of the flame change.

be changed during the simulation. Within this domain we initialize the flow with a

planar premixed flame where the mixture fraction, defined as

I + YF- Yo
Z=

2

is everywhere equal to its stoichiometric value, Z, = 0.5. The incoming flow is

uniform and set equal to the premixed laminar flame speed, S_. Also associated
with the flame is the premixed flame thickness, 6_.

After the flow and flame are initialized, the mixture fraction is varied at the inlet

from its uniform stoiehiometrie value to a tanh profile varying from zero to one.

We characterize the thickness of this mixing layer by the slope of the profile at
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stoichiometric conditions and the overall change in mixture fraction, which gives:

6M(x): Az N ,=0 = N ,=0

It is important to realize that this measure does not remain constant along the

stoichiometric line and is a function of x. We can form a DamkShler number

using the mixing thickness and the planar flame thickness. Since the characteristic

velocity for both chemical and physical processes is the same, we can simply define

the DamkShler number as:

D = _ _M

.re -- _, '

which can be thought of as a dimensionless mixing thickness. The mixing thickness

used in this expression is evaluated at the location of the maximum reaction rate.

An example of a flame's response to a variable mixture fraction is shown in Fig. 2.

With the uniform flow approaching from the left, as the mixture fraction gradient

reaches the flame surface only the centerline is exposed to the stoichiometric mixture

fraction and locally maintains the planar flame speed and reaction rate. Above this

point the mixture is fuel rich, and below fuel lean. As a result, these regions of non-

unity equivalence ratio burn less, the reaction rate drops, and the local flame speed
is reduced. The excess fuel and oxidizer then combine behind the premixed flame

along the stoichiometric surface and burn in a trailing diffusion flame. Thus the

"triple" flame refers to the fuel-rich premixed flame, the fuel-lean premixed flame,

and the trailing diffusion flame.

In addition to the change in structure that occurs when the planar premixed

flame is subjected to a mixture fraction gradient, the propagation velocity of the

flame increases as observed in Fig. 2. In order to study the triple flame in further

detail, a method of stabilizing the flame in the computational domain is needed. We

accomplish this by calculating the relative progression velocity of iso-scalar surfaces.
This method results from equating the transport equation for a scalar variable Y:

with the Hamilton-Jacobi equation for the scalar field (Kerstein et al. 1989):

DY

p--_- = pVIVYI.

Solving for the relative progression velocity of the iso-concentration surface, V, we
obtain:

This relation is evaluated on the centerline in the preheat zone and subtracted from

the local fluid velocity, giving the correction to be applied at the inlet. If one were
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FIGURE 3. Contours of mass fraction, reaction rate, temperature, and density for
a stabilized triple flame.

to apply this correction at the inlet alone, then changes to the flame would only
occur after the convective time required to reach the flame, which is both time
consuming and can also introduce stability problems. A more efficient method is

to apply the correction to all points in the flow as a Gallilean transformation, such
that the steady-state situation is quickly reached.

Some care must be taken in choosing the size of the computational domain.

Because the triple flame redirects the flow laterally, the top and bottom boundaries
must be moved far enough from the stoichiometric conditions so that the viscous

boundary conditions do not affect the flame speed. To avoid this problem, an

unevenly spaced grid is used in the lateral direction where points are clustered

about the stoichiometric line so that the lateral boundaries can be moved far away
from the flame. In addition, all results presented here were run on different sized

domains to check that the size of the computational domain does not play a role in
the flarae speed.
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2. Accomplishments

To begin the investigation of heat release effects on triple flames, we first describe

some general characteristics of triple flames. We have briefly described the structure

of triple flames in the time sequence of Fig. 2, where the flame propagates relative to

the inflow. Fig. 3 shows similar contours, in addition to the temperature and density

fields, for a triple flame stabilized in the computational domain. The effects of heat

release are clearly seen in the temperature and density plots, where the temperature

rises and density decreases behind the premixed wings of the flame, along with the

effects of the nonuniform mixture fraction gradient, where the temperature and

density fields display lateral variations.

Lateral diffusion of temperature and species plays an important role in triple

flames. Behind the premixed wings of the flame, heat is conducted away from the

stoichiometric line. This conduction is important because, unlike one-dimensional

flames with an infinite heat reservoir in the burned regions, heat from the triple

flame is convected to regions which do not contribute to flame propagation. Thus,

quenching is more likely to occur if enough heat is conducted laterally away from

the flame. Lateral diffusion of species is also important and is responsible for the

diffusion wing of the flame.

Another way to determine the role of lateral diffusion is to compare one-dimensional

profiles of different quantities along the stoichiometric line of the triple flame with

those of the one-dimensional flame used to initialize the simulations. These plots are

presented in Fig. 4 where the quantities are scaled by their minimum and maximum

values of the one-dimensional flame. The behavior of all quantities is similar up to,

and somewhat behind, the maximum reaction rate. Behind the premixed reaction

zone, we observe that only the density profile is roughly equal in both cases. We ob-

serve a drop in temperature and an increase in fuel (and also oxidizer) mass fraction

relative to the one-dimensional case. The change in reaction rate is dominated by

the increased mass fractions of the reactants, and consequently an increase in the

reaction rate is observed behind the flame. This reaction rate corresponds to the

burning in the trailing diffusion flame and is a sizable percentage of the maximum

reaction rate. These differences between the one-dimensional profiles and profiles

through the stoichiometric line in the triple flame become larger as we increase the

mixture fraction gradient.

Up to this point we have not included the velocity in our analysis. We have

postponed this until the next section since the velocity field in the triple flame is

quite different than in the planar flame and requires a detailed investigation.

2.1 Effects of heat release on flame propagation

We now turn our attention to studying the effect of heat release on the triple flame

and, in particular, how this affects the propagation velocity. The analytical work of

Dold 1989 and Hartley and Dold 1991 provide estimates of the triple-flame speed

for weak (flOZ/Oy _ 0) and moderate (_OZ/Oy ,., O(1)) values of the nfixture

fraction gradient under the assumption of zero heat release. They find that the

flame speed is greatest for zero mixture fraction gradient, corresponding to a planar

flame, and then decreases as the mixture fraction gradient increases. This is in
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the temperature of the triple flame, and diffusion of fuel and oxidizer increase the
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FIGURE 5. Contour lines of the reaction rate along with the horizontal velocity

component along the stoichiometic or symmetry line for a stabilized triple flame

(_) and planar premixed flame (..... ). For the triple flame the velocity

reaches a minimum just in front of the flame which is close the the premixed planar

flame velocity. Upstream of the flame, however, the velocity is larger.

contrast to the change in flame speed we observe from the time sequence in Fig. 2.

The discrepancy lies in the assumptions concerning heat release. To investigate

this further, we examine the velocity field along the centerline of the triple flame in

Fig. 5. Here we observe that, in addition to the rise in velocity through the flame,

the horizontal velocity component reaches a minimum before the flame. The velocity

at this minimum is close to the planar laminar flame speed, and far upstream the

velocity is larger. Therefore it is necessary to distinguish these two velocities. The

local flame speed is important in terms of chemical reaction, whereas the upstream

or far-field flame speed is identified with the propagation of the entire structure,

UF.

The mechanism responsible for this velocity difference can be seen in the sketch

of Fig. 6. Here we examine the velocity vectors before and after they pass through

the flame surface. In cases with heat release, the component of the velocity perpen-

dicular to the flame increases across the surface, whereas the tangential component

remains unchanged. The jump in the perpendicular velocity component results in a

bending of the velocity vector towards the centerline. This redirection of the flow is

accommodated by the divergence of the streamlines ahead of the flame, resulting in
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streamline

Line ofsymmetry

streamline

FIGURE 6. Mechanism responsible for increased flame speeds. Due to heat

release the normal velocity across the flame is increased, whereas the tangential

component remains unchanged. This redirection of flow towards the centerline

causes the streamlines to diverge in front of the flame, resulting in a decrease in the
flow velocity in front of the flame.

the decrease of the velocity observed in Fig. 5. Since the local flame speed along the

stoichiometric line is near S_, the flame can be stabilized only if the flow speed at

this point remains at this value, which requires an increase in the upstream velocity.

Note than in absence of heat release, there is no flow redirection across the flame,

and therefore the far-field and local flame speeds are equal.

_.2 Effect of raixture fraction gradients

In their previous analytical work, Dold 1989 and Hartley and Dold 1991 observed

a large effect of the mixture fraction gradient on the triple-flame propagation. Due

to the effects of flame curvature, they observed a decrease in the flame speed as the

mixture fraction gradient increases or equivalently the mixing thickness decreases.

Thus for zero heat release cases the planar premixed flame represents an upper limit
for the flame speed.

For cases with heat release, locally these same arguments still apply, however the

far-field flame speed is much more affected by heat release than by flame curvature.

This is depicted in Fig. 7, where the far-field flame speed, UF/S°L, and the local

flame speeds are plotted versus the nondimensional mixing thickness or DamkShler

number. Here we see that, in agreement with the zero heat release analysis, the

local flame speeds remain of the order of S_, decreasing slightly below this value

for small values of the mixing thickness. Also plotted in this figure is the difference

between the local and far-field velocities. This difference eliminates the change in
local conditions, and is therefore a true measure of the effect of heat release. As

one can see from Fig. 7, this difference increases as the mixing thickness becomes
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FIGURE 7. Far-field flame speed(+), local flame speed(o), and their differences(ta )
as a function of the local mixing thickness. All flame speeds are normalized by S_,

and for all cases a = 0.75.

larger.
The reason for the increased effect of heat release as the mixing thickness becomes

larger can be explained by Fig. 8. In Fig. 8 we plot the streamfunction through

two flames with different mixing thicknesses. Since the maximum reaction rate
is at the same streamwise location, we can superpose the two streamline patterns
to determine how the flow redirection differs in these two cases. At streamwise

locations near the maximum reaction rate and close to the stoichiometric line the

two cases are similar. As we progress farther downstream, the case with the smaller

mixing thickness spreads more laterally due to the greater burning in the diffusion
flame. As we move laterally to regions further from stoichiometric conditions, the

deflections of the streamlines away from the stoichiometric line become greater for

the larger mixing thickness case. Recall that the mechanism for increased far-field

flame speed relies on the acceleration of the normal velocity component through
the flame. The local velocity jump across the flame is strongly related to the local

reaction rate, which is in turn affected by the local mixture fraction. Thus, the

distribution of the reaction rate along the premixed wings becomes an important
characteristic and is the reason for the different streamline pattern farther from

stoichiometric conditions. For small mixing thicknesses, the reaction rate drops

off quickly as one moves away from stoichiometric conditions. For larger mixing

thicknesses the reaction rate remains stronger as one moves along the premixed

wings, and thus the redirection in the flow is more pronounced.

2.2.1 Small mixing thicknesses and resistance to quenching

For small values of the mixing thickness one might expect quenching to occur.

Quenching would result from the lateral conduction of heat away from the flame.
In previous analytical work (cf. Hartley and Dold 1991), however, quenching was

not observed. Under the assumption of zero heat release, quenching was present
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FIGURE 8. Streamlines for flames with small (left, .... ) and large (right,_)
mixing thicknesses. The streamlines are superposed beneath.

only when the flame was subjected to an external strain field (Dold et al. 1991).
Kioni et at. 1993 have simulated triple flames under external strain and have found

negative propagation velocities, or an extinction front, to occur when the mixing
thickness is small enough, once again under the assumption of zero heat release.

In our present study, therefore, we do not expect quenching to occur since no
ezternal strain is present. Furthermore, in cases with heat release the resistance

to quenching is enhanced. This added resistance to quenching occurs as the flame-

generated straining motion which creates the reduction in the horizontal velocity
also decreases the effective mixture fraction gradient in front of the flame and,

therefore, limits how small the effective DamkShler number can become in Fig. 7.

This reduction in the local mixture fraction gradient is observed in Fig. 9. Here the
mixture fraction gradient along vertical slices is taken at the inlet and on a slice

through the maximum reaction rate. The mixture fraction gradient is everywhere
reduced by diffusion, but near stoichiometric conditions the effect of the heat release-

induced strain on the mixture fraction gradient is dominant.
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FIGURE 9. Vertical mixture fraction gradient profile at the inlet (........ ) and on

the vertical line passing through the maximum reaction rate (--).

2.2.2 Large mixing thicknesses and scaling laws

We have seen that for the range of mixing thicknesses considered in this study, as

we increase the mixing thickness the propagation speed increases. We expect that

for very large mixing thicknesses, where 6M/_°L >> 1, the flame speed reaches some

asymptotic value.
We can derive an estimate of the flame speed by considering conservation rela-

tions applied to several locations along the stoichiometric line, shown in Fig. 10.

These locations are: (1) far upstream, (2) immediately preceding the flame, (3)

immediately following the flame, and (4) far downstream. For large mixing thick-

nesses, the flow in the immediate vicinity of the flame is nearly one-dimensional.

Thus between stations (2) and (3) we can apply the Rankine-Hugoniot relations:

p2u2 = p3u3 (1)

+ = P3 + (2)

On either side of the flame the density can be taken as constant,

pl = p2; p3 =f14

so along the stoichiometric streamline we have

P1 -[- lplu21 = P2 + _P2u22 (3)
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FIGURE 10. Triple flame for large mixing thicknesses. Propagation speed can be

determined using conservation relations along the stoichiometric (dashed) line at
stations 1-4, and also in the streamtube traced by the thin solid lines.

1 2 1
P3 + -_p3u3 = P4 + -_p4u] (4)

We identify the flow velocity in front of the triple-flame along the stoichiometric

surface as the planar premixed flame speed:

u2 =

thus we are interested in determining us�u2. In addition to the above relations

we need to apply integral conservation laws. We choose a control volume which

connects the upstream and downstream locations by streamlines which "touch" the

edges of the premixed flames. If we denote the thickness of the control volume at

any location by 6, then for mass conservation we have:

plUl_I _' P4U4_4 (5)

where as a first approximation we have assumed u4 is constant behind the flame far
downstream.

Combining these conservation relations and solving for ul/u2 we have:

,)
u2 / P1- P4,

(6)
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FIGURE 11. Flames speed ratio versus density ratio in simulation.

Equation 6 thus provides us with the propagation speed relative to the planar flame

speed as a function of the density, pressures, and thicknesses at stations (1) and

(4). However, we would like to have this expression in terms of the densities alone.

So, we need an integral form for momentum conservation over the control volume.

If we denote the average pressure along the control volume streamlines as Ps, then

the global momentum relation is:

PI_I -Jr-pl't/2(_l -_ Ps(_4 - (_I) = P4_4 31" P47"/42_4 (7)

If we further make assumption that/91 = P4 = Ps, then Eq. 7 gives:

plU1261 = P4U42_4

which after using the overall mass conservation equation, we obtain:

61 P4

64 px

Substituting this into Eq. 6 along with the equal pressure assumption gives:

UF Ul (pl) 1/2

Numerically we cannot simulate flames with the length-scale ratios required in

the above formulation; however, we do observe the scaling behavior in Eq. 8 for our

simulations with large mixing thicknesses, shown in Fig. 11.

3. Future work

In this study we have investigated one possible flame structure that can occur in

partially-premixed conditions. We have established the role that heat release plays
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on this flame and its propagation assuming rather benign conditions for the flow
and chemistry. Just as we have relaxed the assumption of zero heat release used in

previous studies, in the future we must also relax the assumptions presently made
concerning the flow field and chemical reaction mechanism.

The assumption of uniform parallel flow has enabled us to determine how the

flow is modified by heat release, but is too simple a model to describe the behavior

of flames in turbulent combustion. As a first step towards understanding flame

stabilization in turbulent combustion, the response of triple flames to vortices was
examined in Veynante et al. 1994, where triple flames were found to be more robust

than nonpremixed flames under similar circumstances. However, even before we
consider turbulent or vortical flows, there are several questions one can ask about

flame behavior in simpler flows.

In many practical applications reactants are mixed in jet flows, where the fuel

and oxidizer streams have different velocities. In such cases the lateral position
of the flame, i.e. whether it lies in the fuel or oxidizer stream, can greatly affect

stabilization. There are several parameters that can change the flame position.

Stoiehiometry clearly has a large affect on flame positioning. The effects of stoi-

chiometry on triple-flame structure has been investigated for zero heat release flames
by Dold 1989, but how this is coupled with heat release has yet to be determined.

Non-unity Lewis numbers can also modify flame positioning. A method for simu-

lating non-unity Lewis numbers in diffusion flames has been developed by LifiLnet

al. 1994, where the position of the diffusion flame in a shear layer was found to play
a large role in the overall dynamics. Non-unity Lewis numbers modify more that
the flame position, however. Buckmaster and Matalon 1988 showed for zero heat-

release flames that the triple-flame structure can be altered dramatically where one
of the premixed wings can point into the oncoming flow. Lewis number effects can

also modify the flame propagation, and this is expected to have a very pronounced

effect due to the large curvature inherent to the triple-flame structure.

Aside from including more complicated flow, stoichiometry, and Lewis number

effects in studies of partially-premixed combustion, there are other modifications

that can be implemented. We have shown in this study that the distribution of

the reaction rate along the premixed wings of triple flames greatly affects the flame
propagation. Because of this, flamability limits included in the chemical mecha-

nism can be introduced. Extending the chemical model to include multiple steps is
also desirable in certain cases. This is especially true if one is interested in NO,

formation during ignition. Because NOx formation occurs during non-equilibrium
combustion, multi-step chemistry is necessary for investigating pollutant formation.
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Turbulence modeling for separated flow

By P. A. Durbin

1. Motivation and objectives

Two projects are described in this report. The first involves assessing turbulence

models in separated flow. The second addresses the anomalous behavior of certain

turbulence models, such as k - e, in stagnation point flow.

The primary motivation for developing turbulent transport models is to provide

tools for computing non-equilibrium, or complex, turbulent flows. Simple flows

can be analyzed using data correlations or algebraic eddy viscosities, but in more

complicated flows such as a massively separated boundary layer, a more elaborate

level of modeling is required. It is widely believed that at least a two-equation

transport model is required in such cases. The transport equations determine the

evolution of suitable velocity and time-scales of the turbulence. The appropriat__.e

velocity scale for turbulent transport toward a wall is the normal component, v 2,

not the turbulent intensity, k. This and other considerations motivated the k -

e - v 2 model, which can be used in wall-bounded flows. Applications to complex

geometry require a generalized interpretation of the velocity scale v s. The model

originally was developed for attached or mildly separated boundary layers. Rather

promising results were obtained in tests of the formulation. Here the model is

assessed in strongly separated flows. Doing so requires that v 2 be regarded simply as

a velocity scale that satisfies boundary conditions suitable for the normal component

of turbulent intensity; it cannot be regarded as the 'y-component' because that

would be inappropriate in general geometries that can have surfaces aligned in any

direction. This loosened understanding of v 2 presents no operational difficulties.

Two equation models as well as the k - e - v 2 model predict an anomalously

large growth of turbulent kinetic energy in stagnation point flows. Even when the

stagnation point region is not of interest per se, this spurious behavior can upset

the rest of the flow computation. A formal upper limit to the turbulent time-scale

in such models alleviates their stagnation point anomaly. This bound is derived

in §2.4 and is illustrated with the stagnation point flow at the leading edge of an
airfoil.

2. Accomplishments

The governing equations of the k - e - v 2 model will not be presented here. Their

initial development is described in Durbin (1991), and a more complete description

of the present work will appear in Durbin (1994). The mean flow satisfies the

incompressible Navier-Stokes equations with an eddy viscosity. The turbulence

model uses the standard k - c equations, a v 2 tran__sport equation and an elliptic

relaxation equation for the source term f22 in the v2-equation.

The computations were done with an extended version of the INS2D code of

Rogers and Kwak (1990). The extensions required for the present computations
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FIGURE 1. Skin friction coefficient on wall downstream of the backstep compared

to experiments of Jovic and Driver ( _, • ) and Driver and Seegmiller ( .... ,

• ). -....... line is solution to SSG model for Jovic and Driver flow.

consist of providing subroutines to solve the transport and elliptic relaxation equa-

tions of the k - _ - v 2 model. This code development will not be described here.

The numerics are discussed in Durbin (1994). The program can solve full second

moment closure models as well as eddy viscosity models.

The present study included assessment of second-moment closures in separated

flow. The results were generally less satisfactory than k - _ - v 2 . These second-

moment computations will not be presented.

Sections 2.1-2.3 present three separated flows: these illustrate sharp edge separa-

tion; smooth wall, pressure driven separation; and unsteady vortex shedding. This

last case was studied at the suggestion of colleagues at Pratt & Whitney.

_.1 Flow over backward facing steps

The backstep flow configurations studied experimentally by Jovic and Driver

(1993) and by Driver and Seegmiller (1985) were computed with the k- ¢- v 2 model

and with second-moment closure models. The JD experiment had a step height

Reynolds number of 5,000; the DS case had Re = 37,500. Both the IP and SSG

second-moment closures as incorporated into the elliptic relaxation procedure were

tried. Computations showed that they significantly under-predict the magnitude of

the reversed flow downstream of the step, as suggested by the dotted skin friction

curve in Fig. 1: this should be compared to the solid line and triangles.

Computed and experimental skin friction coefficients on the wall downstream of

the step are compared in Fig. 1. The computed reattachment point at z = 6.2 step

heights is in agreement with the data. The relatively large negative skin friction in

the JD experiment is due to low Reynolds number. The k - e - v 2 model correctly

shows this sensitivity to Reynolds number. Overall, the agreement with experiment

is better than has been found using the standard k - e model with wall functions

(Driver and Seegrailler, 1985); numerous independent computations have shown
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that model under-predicts the reattachment length.

Figs. 2 and 3 show profiles of the U-component of velocity. These profiles are

plotted in the form 10U + x to display their evolution down the duct. The agreement

between model and experiment in the JD case is quite good. In the higher Reynolds

number DS case, the agreement is good for x < 8, but the model solution for the

boundary layer downstream of reattachment recovers more slowly than the data.

This slow recovery downstream of reattachment is a universal problem of turbulence

models shown by Reynolds stress as well as k - c models.

2.2 A separated diffuser

Obi et al. (1993) measured the flow in a one-sided, 10 ° plane diffuser. The

expansion ratio of 4.7 was sufficient to produce a separation bubble on the sloping

wall; hence, this provides a test case for smooth, adverse pressure driven separation.

The entrance to the diffuser consisted of a long plane channel (aspect ratio 35) in



100 P. A. Durbin

10 L_O ;30 4_0
IOU+x

FIGURE 4. Mean velocity profiles in the Obi, et al. diffuser. Both Eq. (9) ( _ )

and a constant value of 1.55 ( .... ) were used for C = The light dashed lines
E l "

show the diffuser surface.

order to produce fully developed flow. The Reynolds number based on the half-

height of this channel was 10,000. The computational inflow profiles were obtained

by solving fully developed channel flow with a parabolic code. Fig. 4 shows profiles

of 10U + x. The boundary of the diffuser is indicated in the figure--note, however,

that the aspect ratio of this figure is not unity: the actual duct is more elongated.

The profiles on the ramp are in good agreement with the data, showing the smooth

separation; further downstream, the predicted backflow is less strong than the data.

Note that the mass flux is constant, so less baclcflow near the lower wall is necessarily

accompanied by less forward flow in the upper part of the channel. Second moment

closure computations of this flow failed to predict the separation in this flow. Both

SSG and IP second-moment closure models gave only a tiny region of reversed flow

at the foot of the ramp.

2.3 Voriez shedding behind a triangular cylinder

The flow around a triangular cylinder in a duct was measured by Sjunnesson

(presented in Johansson et al. 1993). This geometry provides an example of bluff

body flow with fixed separation points. The study by Sjunnesson was motivated

by the application to flame holders. The geometry consists of a 6:1 aspect ratio

equilateral triangular cylinder centered symmetrically in a duct three cylinder sides

high. The Reynolds number based on the cylinder side and inlet velocity was about

42,500.

Both steady state and (statistically) unsteady solutions were computed. By tak-

ing a large artificial time-step on the order of the shedding period in length, we ob-

tained symmetric, steady solutions. Upon introducing an asymmetric disturbance

and taking a smaller step, an oscillatory solution was obtained. Fig. 5 is a com-

posite showing the time-averaged U-contours of the unsteady computation in the

upper half and the steady state solution in the lower. It shows that the steady-state
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FIGURE 5. U-contours for a steady calculation (lower half) and time-average of

an unsteady computation with vortex shedding (upper half).
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FIGURE 6. Instar_taneous vorticity contours showing shedding in the time accurate

computation.

separation bubble is over twice as long as the averaged, unsteady bubble.

Instantaneous vorticity contours, in Fig. 6, show the asymmetric flow in the time

accurate computation. The interaction between the vortex street and the boundary

layers in the side walls results in eruption of secondary vorticity. The complexity of

such interactions underscores the need to resolve the coherent vortices in this type

of flow.

Fig. 7 shows profiles of the time-averaged U-velocity component in the wake. The

computational results were obtained by averaging the numerical solution over one

period of the vortex shedding. The profiles are displayed evenly spaced, but the

actual locations were x = 0.375, 0.95, 1.525, 3.75, and 9.4 heights downstream

of the rear face of the cylinder. The agreement between experiment and model is

excellent. The first profile at x = 0.375 shows the sharp boundary and large velocity

deficit of the near wake. By x = 0.95 the wake profile has altered substantially

and is undergoing transition to a Gaussian form. The different curves show the

convergence of the solution with grid refinement. It can be concluded that the
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The calculations are shown for three grids: 141 x 101 ( _ ), 121 x 91 ( .... );
71 × 51 ( ........ )

statistical unsteadiness produced by vortex shedding must be resolved in order

to compute this flow. The steady state computation of this flow is as dubious

as a homogeneous computation of a spatially homogeneous flow; it leads to quite
erroneous predictions.

2.4 On the k - _ stagnation point anomaly

Two equation models as well as k - e - v2 predict an anomalously large growth
of turbulent kinetic energy near to stagnation points (Launder and Kato, 1993;

Menter, 1992). This can cause difficulties in aerodynamic flows with a free-stream

impinging on a blunt leading edge. Even when the stagnation point region is not of
interest per se, this spurious behavior can upset the rest of the flow computation.

The usual explanation for the stagnation point anomaly is that the eddy viscosity
formula

uiu] = -2t_tSii -t- Z k6ij (1)
£%

3

gives an erroneous normal stress difference (Launder and Kato 1993). In (1), Sij =
(OiUj + OjUi)/2 is the rate of strain and

vt = Ct, kT (2)

is the eddy viscosity. T is the turbulent time-scale (e.g., k/e).

Some of our computations suggest an alternative understanding of the anomaly:
as the stagnation point is approached, T becomes very large. The c-equation is of
the form

O,e + U . ve = C'_'P- C_'e ( _ )T +V. (v+ )re , (3)
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where the rate of turbulent energy production is P = 2vtSoSji. A large value of

T in Eq. (3) causes the production of e to be too small, allowing spuriously high
turbulent kinetic energy. The stagnation point anomaly can be ameliorated by

imposing a bound on the time-scale. In the following we will derive the constraint

T = rain ' 3Cj,
(4)

where SijSji - ISI 2. In most situations this reduces to T = k/e; in highly strained

flow the upper bound comes into play.

The constraint will be derived by requiring that (1) satisfy 2k >_ u 2 > 0, which

can be called a 'realizability condition'. The rate of strain tensor Sij is symmetric
and becomes purely diagonal in principal-axes coordinates. The diagonal elements,

'ka, a = 1... 3, are its eigenvalues and satisfy

'k_+ 'k_+ 'kl = ISl_. (5)

In incompressible flow

It follows from (5) and (6) that

'kl + 'k2 + 'ka = 0 (6)

I'kol = _/2 (7)

in two dimensions (i.e., when ,ks = 0), and

I'k<,l-<V/_2/3 (8)

in three dimensions.

If (1) is written in the principal axes of Sij, it becomes

3 "
(9)

Of the constrains u_ > 0 and 2k >_ u 2, Va, the former is more stringent; this
constraint is

2 (10)2ut max 'k_ <_5 k.

Substituting (2) into (11) results in the time-scale bound

1 1
T < (11)

- 3Cu max'k<_

which gives
2 1

T _< 3C, -'r=-'='2 (12)x/Zl_l
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(a)

(b)

FIGURE 8. Contours of constant k/U2: (a), with (6) imposed; (b), without
constraint. Contour intervals of 1.5 × 10 -3.

in two dimensions, and

T _< _ 81Sl _ (13)

in three dimensions. These bounds might be imposed computationally by Eq. 4.

Fig. 8 shows k contours for the flow over a NACA4412 airfoil at zero angle of

attack and with k = 4 x 10 -4 U_ in the approach flow, with and without the con-

straint on T. This computation was done with the k - _ - v 2 model. The constraint

prevents the spurious growth of k although some amplification still occurs.

3. Future plans

Flows with mean swirl are of interest for their role in enhancing mixing both by

turbulent and mean motion. The swirl can have a stabilizing as well as a destabi-

lizing effect on the turbulence. I have written an axi-symmetric extension to the

INS-2D computer program and added the capability to compute swirling flow. This

is in order to study confined coaxial jets with or without swirl. High swirl can

produce vortex breakdown on the centerline of the jet. This type of flow occurs in
various combustors.

The present vortex shedding calculations suggest that the application of turbu-

lence models to separation control by external periodic excitation should be ex-

plored. This is a problem that Hans Kaltenbach has been investigating by LES.
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Notes on rotating turbulence

By O. Zeman

1. Motivations and objectives

The purpose of this work was to investigate the turbulent constitutive relation

when turbulence is subjected to solid body rotation. Rotating turbulent flows exist

in many industrial and geo- and astrophysical applications.

2. Accomplishments

2.1 Note on spectra and decay of rotatin9 homoyeneous turbulence

Recently, Squires, Chasnov, Mansour, & Cambon (1993) (hereon SCMC) ad-

dressed the problem of asymptotic behavior of homogeneous turbulence. Briefly, to
summarize their results and findings, they applied a spectral LES method to achieve

an asymptotic, equilibrium evolution of initially isotropic turbulence subjected to
solid body rotation of angular speed _. The computations, which were run for

times of order O(10 s) of initial turbulence time scales, confirmed the prediction of

the asymptotic decay laws. The authors used two different (initial) spectral forms

of the energy spectrum E(k) at low wavenumber k:

E(k) = 27rk2Ao + .... and E(k) = 27rk4A2 + ....

In nonrotating turbulence the two spectral forms are known to produce different

time decay exponents (n) of the turbulent kinetic energy ½q2 = f_o E(k)dk oc t-".

For the k 2 spectrum, n = 6/5, and for the k 4 spectrum, n = 10/7. In the presence

of rotation the following asymptotic decay laws were proposed in SCMC:

2/5-3/5 3/5q2 _ Ao t 9t (k 2 spectrum) (1)

q2 c( A]/' t-s/7_ 5/7 (k 4 spectrum) (2)

The above laws were confirmed by the LES computations within a few percent.

Computations also indicated that the rotating turbulence has a tendency toward
a two-dimensional state in the sense that the spectral energy tends to concentrate

at wavenumbers normal to the rotation axis, i.e. the gradients with respect to the

wavenumber parallel to i'l become relatively small. At the same time the turbulence
remained remarkably close to isotropy if measured by departure from the isotropy

tensor bii =< uiuj > /q2 -- 1/36ij. This suggests a turbulence structure consisting
of vortices aligned with the rotation axis and of jet-like (fluctuating) flow parallel
to the rotation axis.

The purpose of this note is to explain the behavior of the rotating turbulence on
the basis of a model for the spectral energy transfer, and to propose modification
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of the turbulence spectrum when the rotation is much more rapid than the eddy

turnover time scale. We start with a simplified Lagrangian description of the relation

between stress and mean strain in rotating turbulence. The resulting relationship is

then used to describe the energy transfer from larger to smaller scales in the spirit

of the analysis described in Tennekes & Lumley (1972) for nonrotating turbulence.

Denoting Lagrangian fluctuating velocity components by vi and taking the ro-

tation vector to be n = (0, 0, f_), one can write equations for the motion of fluid

particles originating at some point in space and time (ao, to) as follows:

dvi
-- = -vjU_,j + 2e,jsflvj + Hi (3)
dt

Here, Ui represents a background mean velocity field which is considered as slow

varying with respect to the characteristic Lagrangian (turbulence) time scale 7"L

and length scale (o¢ qvL). II_s are random forcing terms comprising the effect of

the fluctuating pressure and higher order correlations. The viscous terms are taken

to be negligible on account of the high turbulence Reynolds number assumption

(ReT o¢ q2rL/V >> 1). The velocities vi are functions of position and time vi(X, t)

of the fluid particle, with the initial position X(to) = ao. Because turbulence

is statistically homogeneous, we shall suppress the space dependence and utilize

the ensemble-average identity < vivj > (t) =< uiuj > (t), i.e., the one-point

Lagrangian averages (over all initial locations) are equal to the Eulerian averages

(over the flow volume). A useful reference for Lagrangian description of turbulence

is Monin & Yaglom (1971).

Now, neglecting the effect of IIi and assuming that the gradients Ui,s of the

slow-varying velocity field (in the rotation direction) are negligible, it is possible to

formulate a stress-strain relation < vlv_ >_ -$12 (So = ½(Ui,j + Uj,i) is the slow

strain tensor). This is achieved first by integrating (3) to obtain expressions for

_1_ _2:

f

v,(t) = V o(to) - ul,j J,o

v2(t) : v2o(to) -- U2j _ttl

Further manipulations yield an expression

lq2T L

< v v2 >=< u1 2 >= 1 + 4c r  (2£ - R 2)

v)(t')dt' + 2fl v2(t')dt'

J;vj(t')dt' - 2£t v_(t')dt'

]2S12 = --2VTSI2. (4)

Here, all the required Lagrangian time scales such as TLo =< v_ >-1 f0°° <

va(t')va(to) > dt' were written for simplicity as a single time scale rL, which is in

turn proportional to the turbulence time scale flu _ (t and u _ being characteristic

length and velocity scales); Rij is the asymmetric complement to Sij. The presumed

differences in timescale magnitudes are absorbed in the free constants ci. Clearly, (4)

expresses a turbulent constitutive relation in the presence of rotation; the effective
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eddy viscosity VT is evidently diminished by a factor depending on (rz f_)2. Although

in the following analysis the flow field represented by Sij and Rij is taken as random,

it is of interest to interpret (4) considering a homogeneous rotating shear flow with
1 USz2 = Rz2 = _ 1,2 = ½S. Then we note that the nature of the constitutive relation

(4) is such that VT is maximized for (fl/S),n== = 0.125. On the other hand, the
LES results of Bardina et al. (1985) and linear stability analysis (see e.g. Speziale,

1991) indicate the maximum turbulence amplification at (l'l/S)m== = 0.25. Since

in the following analysis R12 is neglected, the exact value of (l'l/S)r,,.= is irrelevant

to our problem. A stress-strain relation analogous to (4) has also been derived in

cylindrical coordinates for a turbulent line vortex by Zeman (1994a) (comparable

when the vortex flow is in solid body rotation i.e. when Uo,im,,ih = rfl).

Now we shall relax the relation in (4) so that S12 = S(k') represents the strain

of eddies (of size o¢ 1/k') larger than the wavenumber k of the stress < ulu2 > (k).

Following the line of reasoning in Tennekes &: Lumley (Section 8.4) concerning the

spectral transfer in nearly isotropic turbulence, the spectral energy flux T(k) across
the wavenumber k in the inertial subrange is effected mainly by local interaction

so that T(k) _x -Sij(k') < uiuj(k") >ex vT(k")S2(k ') where, approximately, k/3 <
k t < k and k" = 3k _. As shown in Tennekes & Lumley, the quantities at k' or k"

are directly related to the same quantities at k, thus e.g., S(k') ¢x (E(k)k3) z/2 cx

rLZ(k"). Utilizing (4) to express T(k) in terms of quantities (depending now on
E(k), k, l-l) and neglecting the contribution I'IR12 in (4) (Ri2(k) is a random

quantity with zero mean and ]RI2[ << 1_), we obtain a relationship

T(k) o< r(k")S2(k ') o<
(Ek)3/2k

l..12 •
1 +c3_

In the inertial subrange the spectral energy flux T(k) across each wavenumber is

constant and equal to the dissipation e, and the above equation can be written as

= _-3/2 (Ek) 3/2kn2 , (5)
1 + c3 _Fx

where _ is the Kolmogorov constant and c3 is another free coefficient. Evidently,

(5) represents an implicit relation for the energy spectrum E(k, e, 1-l) = 0 in the

presence of rotation. For more insight into the meaning of (5), it is useful to define

a rotation (cut-off) wavenumber kn

kn (f 3= __),/2, (6)
E

which delimits the region of the spectrum where the rotation effects are impor-

tant, i.e., k < kn; (note that kn I is analogous to the Ozmidov length in stratified

turbulence). In the region where k << kn, (5) results in an explicit expression

E(k) o¢ e215f1415k-''Is, (7)
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l I I\
ko kn ln( k ) kn

FIGURE 1. Sketch of the turbulence energy spectrum subjected to rotation; ko

and kn are, respectively, the large-eddy and Kolmogorov scale wavenumbers, kn is
defined in (6).

while for k >> kn the Kolmogorov inertial subrange E(k) = o_e2/ak -s/s is recov-

ered. The sketch of the spectrum (with exaggerated slope change) is depicted in

Fig. 1. A general solution of (5) (with cs = 1) is obtained in the form

y5

x = ( 1 + 2y + y2 )1/4, (s)

where x = k/kn and y = EkS/f_ 2. Fig. 2 shows the solutions of the above equation
emphasizing the rotation-affected range by plotting Ek 11/5 and Ek s/a. It is seen

that the spectrum of the form (7) is approximately valid for k/ka < 10 -1 . It should

be noted that expressing the eddy viscosity (in square brackets) in (4) in terms of

spectral quantities at a given k, one obtains

(Elk) 1/2
VT(k) - 1 + c4/y(k)'

(9)

hence the parameter i22/Ek a is the measure of the damping effect of rotation on

the local eddy viscosity. It is of interest that the same parameter appears in the

expression for the subgrid-scale eddy viscosity in the LES of SCMC. Although the

functional dependence of VT(k) on y is far more complicated, both CSMC and
expression (9) give the same asymptotic dependence VT(k) cx y if y << 1.

If there exists a self-similar spectrum as sketched in Fig. 1 (with ko < kfl <<

k_), then (7) also contains information concerning the turbulence energy decay.
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k/ka, based on the solution to (8). par
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Assuming a k' spectrum for k < ko, then ½q2,t cx A2(k_),t cx -e, and using (7) one
obtains

q2 cc t-l°/21_2°/21A:/7. (10)

The exponent n = 10/21 is lower than n = 5/7 in (2) derived from the dimensional

analysis in SCMC. If, however, the rotation damping factor in (5) can be generalized

to 1 + c4y -1 _ y-m, one obtains the relation n = 10/(7 + 14m). Hence, to satisfy

the decay exponent n = 5/7 proposed in (2), m must take on the value rn = 1/2.

This leads to a spectral form

E(k) cx (en)l/2k -2,

different from (7). Analogous relations can be obtained for the k 2 spectrum to

satisfy (1).

In summary, from Lagrangian analysis a relation between turbulent stress and

strain in rotating homogeneous turbulence was inferred. This relation was utilized

to derive the spectral energy flux and, ultimately, the energy spectrum form. If the

rotation wavenumber kt_ lies in the inertial subrange, then for wavenumbers less

than krt the turbulence motions are affected by rotation and the energy spectrum

slope is modified. The present findings provide a new insight into the nature of the

rotation effects on turbulence and, needless to say, their confirmation by (numerical)

experiments would be desirable. It may, however, be difficult to experimentally

distinguish the change in the spectral slope around the rotation wavenumber. The

energy decay laws inferred in CSMC and the present results suggest a modification

of the e model equation and eddy viscosity in k - e models. This is a subject of the

following note.
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2.2 A note on the eddy viscosity in rotatin9 turbulence

A suggested generalization of the expression for the eddy viscosity (in the consti-
1 2

tutive relation uiu j = --2VTSij + "_q _ij) in rotating turbulence derived by Zeman
(1994b) (Eq. (4) in preceding Section 2.1)is

l/To

VT = 1 + csQk(Qk - eijkRij)T 2" (11)

Here, VTo is the appropriate eddy viscosity for nonrotating flow; otherwise the

notation is as in Section 2.1, i.e., q2 = _ is twice turbulent kinetic energy (TKE),
1 U7"= q2/e, and Rij = 3( ij - Uj,i) is the rotation tensor. The optimal value of the

numerical constant c5 was found to be c5 -_ 0.1.

In homogenous rotating turbulence with shear S = OU1/Ox2 = 2R12 and with

the reference frame rotation 12j = 1/3, (11) reduces to

t/To

VT = 1 + csn(Q - S/2)v 2" (12)

For a given value of the rotation-free viscosity l/To and assumed constant value
of the normalized shear Sr = Sq2/e, the eddy viscosity VT is solely a function of

the ratio f_/S and reaches maximum when f_/S = 0.25 in agreement with linear

stability analysis. The function VT(f_/S) is symmetric about _/S = 0.25 and falls

off rapidly with increasing departure from 0.25. With the (tested) value of Sr = 12,
VT decreases by a factor of 14 as _/S changes from 0.25 to 0.25+_0.75.

Apart from the eddy viscosity, the rotation also affects the Kolmogorov energy

cascade and therefore the rate of dissipation. The author proposed a correction to
the e equation to represent this effect (reported also in Hadid, Mansour & Zeman

1994). In the case of purely decaying turbulence subjected to rotation, the modified
• equation is

0e_0t /_2 , (13)

where/3 is now a function of the rotation parameter w = Iflit, in the following way

5 0_ 2

=3.7+ 31+w 2" (14)

In this formulation, (13) satisfies the decay law Oq2/Ot o¢ t-" so that the energy
decay exponent n is 1.2 when w = 0 and n = 0.6 when w >> 1. The latter value

is based on the asymptotic decay of rotating turbulence inferred from the scaling
analysis and LES results of Squires et al. (1993) (when the energy spectrum E(k)

at the large scale end behaves as E 0¢ k4). The form of the function (14) has been

based on the analysis of Zeman (1994b). The model-experiment comparison for

rotating decaying turbulence using (13) and (14) is shown in Fig. 3. The data are
from the experiment of Wigeland & Nagib (1978).
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FIGURE 3. Decay of rotating turbulence; model-experiment comparison. Data

points are from Wigeland & Nagib (1978). f_r0 = 0.12 (--),0.47 (.... ), 70.0

(----); _o = 0.12 (,,), 0.47 (-), and 70.0 (e).
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FIGURE 4. Shear-driven turbulence with rotation: k-e model prediction (with

modified viscosity in (12)); cross-hatched areas represent roughly the DNS results

of Bardina et al. (1985). f_/S = 0.0 (--), 0.25 ( .... ), 0.5 (.... ), and -0.5

(--.--).
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In the presence of shear S = OU1/Ox2, the relevant k - e model equations are

10q 2 _p_ e, (15)
2&

and (13) changes to

0e 0.75P)_2" (13')= -

The TKE production rate P = 4VTSijSij = VTS 2 is determined with the aid of

the modified eddy viscosity in (12); the rotation parameter w in (14) now has to

include the contribution due to the presence of shear, i.e. w 2 = (_k - eijkRij)2r 2 =

(_ - S/2)2r 2. The results of comparison between the model represented by (13')

and (15) and the DNS results of Bardina et al. (1985) are presented in Fig. 4. The

trend in the turbulence evolution with varying _/S is apparently predicted although

the k - e model is incapable of predicting the rapid distortion regime during the

initial development when St < 1. It is noted, however, that the majority of the

Reynolds stress closure models are incapable of reproducing the _ effect on shear

turbulence, particularly for the case of maximum amplification when _/S = 0.25.
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A dynamic localization model
with stochastic backscatter

By D. Carati _ S. Ghosal

1. Motivation and objectives

1.1 The dynamic localization procedure

The modeling of subgrid scales in large-eddy simulation (LES) has been rational-

ized by the introduction of the dynamic localization procedure (Ghosal et al. 1993,

1994). This method allows one to compute rather than prescribe the unknown co-

efficients in the subgrid-scale model. Formally, the LES equations are supposed to

be obtained by applying to the Navier-Stokes equations a "grid filter" operation

defined as:

where G is a kernel damping the fluctuations with a characteristic length shorter

than A. The resulting equations (here we only consider incompressible flows)

contain an unknown "subgrid stress" tensor r 0 that needs to be modeled:

(2)

Tij : Ui Uj -- Ui Uj. (3)

Though the subgrid stress itself is unknown, an identity between subgrid stresses

generated by different filters has been derived (Germano et al. 1991) and is the

basic ingredient of the dynamic procedure:

= T,j - (4)

where Lij = uiuj --5i _j is the Leonard tensor and Tij = ui uj -ui uj is the subgrid

stress tensor generated by a second filter defined by:

_(x) =/v dy G(_-_) _b(y ) . (5)

Here G is a kernel damping the fluctuations with a characteristic length shorter than

_x. It will be referred to as the "test filter". If models ri M, Ti M are used for these

quantities, the difference between the right- and the left-hand sides of relation (4),

^M M
Eij -- Lij Jr vii - Tij #0, (6)
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may be used as "quality indicators" for the subgrid-scale models. In practice, if the

models contain a small number of unknown parameters (like in the Smagorinsky
1

(1963) model Tij -- _6ijrkk = -2CA_ISISij), the dynamic procedure proposes to
determine these parameters by minimizing the quantity:

f
Y'[C]

Jv dy Eii[y; C] Ei)[y; C]. (7)

This procedure partially removes the arbitrariness inherent to modeling in LES.

However, the success of the dynamic procedure still strongly depends on the quality
of the model for which it is implemented.

1.2 Dynamic localization model with k-equation

This model is motivated by the following considerations. When no constraint

is imposed on the Smagorinsky coefficient C, the minimum of the functional .T[C]
is achieved for a field C, which can be locally negative. In this case, the model

exhibits local reverse energy transfer. This is one of the simplest adaptations of
the standard Smagorinsky expression to allow for a variable C and backscatter

(Piomelli et al. 1991). However, it leads to some difficulties. A negative eddy
viscosity generates an exponential amplification of local disturbances instead of the

traditional exponential damping. The resulting backscatter is an "auto-catalytic"

phenomenon which does not correspond to the real physics of reverse energy transfer

in turbulent flows. As a consequence, unphysical instabilities in the LES equations
have been observed when the coefficient C in the Smagorinsky model is determined
by an unconstrained (no positivity required) variational procedure. The backseatter

appears to be unsaturated and the model is unusable. However, Ghosal et al. (1993,
1994) have stressed that the reverse flow of energy must be quenched at the latest

when all the subgrid-scale energy has been removed, and they have proposed to use
the alternate representation

V, = 2 C' -_ k 1/2 (8)

instead of the Smagorinsky scaling. Here, k represents the subgrid-scale energy for
which a separate transport equation is needed. The basic DLM(k) equations are
given in (Ghosal et al. 1993, 1994). It can be shown that this model is stable. This

approach involving the subgrid-scale kinetic energy is the first self-consistent model

in which backseatter is accounted for in the framework of the dynamic procedure.

The combination of a locally negative transport coefficient and a saturation pro-

cess is reminiscent of some instabilities in complex fluids. For example, phase sep-

aration in multicomponent mixtures can be described by instabilities created by
a negative diffusion coefficient and saturated by surface tension effects (which are

usually modeled by "hyperdiffusivity" terms). Roughly speaking, the DLM(k) pic-

ture for backscatter is similar. At some locations in the fluid, the eddy viscosity

becomes negative. In a first stage, this generates an instability characterized by an
exponential amplification of the local disturbances. In a second stage, a saturation

process arrests the further growth of the instability. Later, the rapid changes in



A dynamic localization model with stochastic backscatter 117

the turbulent velocity are likely to modify the local conditions, and the viscosity

is expected to go back to positive values. This process does not explicitly take

into account the possible stochastic nature of backscatter, but is not incompatible

with a "molecular representation" of the small eddies. Indeed, the large diversity
of small-scale eddies suggests that the turbulent fluid should behave more like a

very complex (in a rheological sense) medium, and one should not expect the eddy
viscosity to remain positive at every space time point.

Although preliminary tests of this model have been satisfactory, the use of a neg-

ative eddy viscosity to describe backscatter is probably a crude representation of

the physics of reverse transfer of energy. Indeed, the model is fully deterministic.

Knowing the filtered velocity field and the subgrid-scale energy, the subgrid stress
is automatically determined. Obviously, this is only an approximation. It is very

unlikely that the small scales influence the large scale evolution only through k.
This is nevertheless an improvement when compared to the traditional Smagorin-

sky model in which no information from the small scales is included. However, we
know that the LES equations cannot be fully deterministic since the small scales axe

not resolved. This stems from an important distinction between equilibrium hydro-

dynamics and turbulence. In equilibrium hydrodynamics, the molecular motions

axe also not resolved. However, there is a clear separation of scale between these

unresolved motions and the relevant hydrodynamic scales. The result of molecular
motions can then be separated into an average effect (the molecular viscosity) and

some fluctuations. Due to the large number of molecules present in a box with

size of the order of the hydrodynamic scale, the ratio between fluctuations and the

average effect should be very small (as a result of the "law of large numbers"). For

that reason, the hydrodynamic balance equations axe usually purely deterministic.
In turbulence however, there is no clear separation of scale between small and large

eddies. In that case, the fluctuations around a deterministic eddy viscosity term

could be significant. An eddy noise would then appear through a stochastic term

in the subgrid-scale model and could be the source of backscatter. Some existing
models have already represented reverse energy transfers by random terms. For

example, a random eddy force derived from the eddy damped quasi-normal Marko-

vian approximation has been used with some success in LES of isotropic turbulence

by Chasnov (1991). This idea has been extended to boundary layers by Mason

&=Thomson (1992) and a similar approach has also been used by Leith (1990) to
study LES of mixing layers. However, all these stochastic models contain an arbi-

trary parameter that must be tuned to obtain satisfactory results. Here we present
an alternative subgrid-scaie model in which the dynamic procedure is combined

with a stochastic representation of backscatter. Following the dynamic procedure,

no arbitrary parameter will be introduced in the model. Such a model represents a

more traditional picture (Kraichnan, 1976; Leslie & Quarini, 1979) of backscatter

than a negative eddy viscosity based model. However, it must be stressed that
the true energy transfers between small and large scales are probably much more

complex than that described by either an eddy viscosity or an eddy noise formal-

ism. Both these models probably remain rather crude approximations to the real
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physical process.

2. Accomplishments

2.1 Stochastic dynamic localization model

The DLM(k) proposed by Ghosal et al. (1993, 1994) accounts for backscatter

through a purely deterministic eddy viscosity. Let us now adopt a different point of

view and assume that backscatter may be represented by a stochastic forcing term.

At grid level, the proposed model is:

Ojrij = Oj (C _ij) + fi, (9)

where/3 0 = -2 A 2 IS[ S 0 corresponds to the standard Smagorinsky model and fi

is an eddy force. For the sake of simplicity we will choose the simplest temporal

behavior for f by assuming that the eddy force is a white noise process. The general

form of its two-point, two-time correlation is then given by:

(fi(r, t)fj(r', t')) = A2(r, t)Hij(r - r')6(t - t'), (10)

where (r, t) and (r', t') are two space-time points. The operator (...) will denote the

averaging over all possible realizations of the random force conditioned on a given

velocity field u(r, t). The functions Hij characterizing the forcing correlation will be

discussed later. We only assume that the prefactor A 2 is chosen so that Hii(O) = 1.

In what follows, fi is supposed to be divergence free (this can always be ensured

by suitably modifying the pressure term). The choice of a solenoidal force is not

essential but it simplifies the following discussion because the pressure then does

not involve the random fields used to model the stochastic force. In some sense, the

white noise process can be seen as the "most stochastic" choice. Thus, comparison

between the stochastic dynamic localization model, DLM(S) defined by (9), and the

DLM(k) should show what are the respective advantages (if any) of stochastic and
deterministic models for backscatter.

It should be noted that the DLM(S) only models the divergence of the subgrid-

scale stress. This is justified because the divergence is the only quantity needed in

the LES equations. Also, the introduction of a stochastic force is much easier in the

formulation (9). Thus, the quantity OjEij should be used in the dynamic procedure

instead of E O. However, this would lead to major difficulties: The unknown quan-

tities A and C would be determined by stochastic, integro-differential equations.

The resolution of such equations would dramatically reduce the performances of

the model. To avoid these problems, we propose to base the minimization proce-

dure on the quantity (Eij) instead of OjEij where the average is performed over all

the possible realizations of the random noise fi conditioned on a fixed velocity field

u(r, t). This is a convenient approximation which results in the following simplifi-

cations. First, the error tensor IEij) is deterministic and totally independent of the
random forces:

A

(Eij>= Lij + C _ij - C aij, (11)
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where a ij = - 2 £2151 _ij. Also, C is now determined by minimizing fv dy (Eij)(Eij)

which is exactly the same variational problem as in the deterministic models. Fi-

nally, since the DLM(S) is supposed to model backscatter by the eddy force, it is

natural to assume that the Smagorinsky term is purely dissipative. The parame-

ter C has then to be determined by the constrained dynamic localization model,

DLM(+) (see Ghosal et al. 1993, 1994).

Since the force disappears from this first part of the dynamic procedure due

to the conditional averaging over all realizations of the random force, we need an

extra-relation for determining its amplitude. It can be obtained by noting that,

even though the average effect of the force vanishes in the equations for the mean

momentum, it will lead to a finite effect in the energy balance equation. Two

equivalent energy equations may be obtained for the quantity E = uiuj2:

(12a)

0,2 .... -  io, + + +Es, (12bl
where ... stands for the viscous and inertial terms that are identical in both these

equations. The pressure terms P and p are determined to keep the velocity diver-

gence free at grid and test level. The quantities CF and _] represent the energy

input in the system respectively by Fi (the test level eddy force) and ]i (the filtered

grid level eddy force). The difference between the right-hand sides of Eqs. (12a)

and (12b)

z = cr - El - 9 # 0 (13)

plays exactly the same role for the energy transfer as the quantities Ei.i for the

subgrid-scale stress. Here g is a known quantity (C has been determined by the

DLM(+)) given by

g =uiOj(C aij+P6ij-_ij-Li.i-_6,j). (14)

The minimization of the quantity Z = fv dr {Z) 2 can now be used as a variational

determination of the parameters that enter the model for the eddy force. At this

point, little has been said about the statistical characteristics of the stochastic force

itself. The variational problem presented here could be used together with a wide

variety of choices for the eddy force.

Let us now discuss some additional assumptions that will greatly simplify the

DLM(S) equations. From a computational point of view, it will be very convenient

to consider the limiting case for which fi at different grid points may be assumed

to be completely uncorrelated. This avoids the non-trivial problem of generating

random numbers with complex spatial correlations. This is also physically plausible

since the eddy force is assumed to model random phenomena due to structures

smaller than the mesh grid. Thus, the function Hit will be assumed to be negligible
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for distances [r- r' I larger than the mesh grid. Here we also assume that the

probability distribution function of fi corresponds to a Gaussian process. In that

case, a force characterized by the correlations (10) leads to an average energy input

Ef = 1A2(r,t)Hii(O) = _A2(r,t). (15)

Let us now show how the dynamic procedure can be used to determine this energy

input. The variational formulation presented above does not directly involve EI"

However, we can easily relate it to _'I using Kolmogorov type ideas about energy

transfer in the inertial range. Indeed, all the models used in LES - and model (9)

is not an exception - are based on such arguments. Thus, the transfer rate is

supposed to be independent of the filter width (in the inertial range), and we may

assume that the backscatter rate has the same property (_f) _- (_F). Moreover, the

test-filter acts like a local averaging of the random numbers f's which are almost

uncorrelated (the two-point correlation is assumed to decay rapidly) and which

vanish on the average. Thus, f is much smaller than f, and (_c]) can be neglected

when compared to (Cf). It can then be assumed that (g']) << (_f) : (_F)" Thus,

relation (13) gives

(z) = (Es) - g.

Let us now consider a simple model for the stochastic force:

(16)

fi = P,j(A ej) (17)

where .4 is a (dimensional) coefficient which plays a role similar to the Smagorinsky

coefficient C. The operator Pij =/fij - V-2ViVj takes out the divergence of the

vector .Aej. Here ei are random numbers for which the probability distribution

function is supposed to be Gaussian and isotropic:

(ei(r, t)) = 0, (lSa)

1

(e,(r,t)_Ar',t')) = _ _u _(t- t') ,_,,,,, (185)

Here, we focus on the discrete equations and consequently we have used the Kro-

neker symbol. In agreement with the arguments leading to relation (16), the two-

point correlation vanishes for r # r'. Comparison of (17) and (18) with (10) shows

that Hq(r, r') = PikPjklfr,r,/2 and A 2 = 2.A2/3. Thus, the energy input is:

(CI) = _A2 = 3A2.

The variational problem can then be used to determine ,4 by minimizing

.)

(19)

(20)
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FIGURE 1. Time evolution of spectra in decaying isotropic turbulence -- :

DLM(k); +: DLM(+); .... : DM; ........ : DLM(S); ----- : no model; =: experi-

ment (t=1.55); • : experiment (t=2.70).

Following the method used by Ghosal et al. (1993, 1994) this leads to

.,42 = 3 [g]+, (21)

where [x]+ = (x + Ixl)/2. Thus, if we consider that the random numbers ei are

uncorrelated for different grid points, the DLM(S) is defined by (9) and (17) in

which C has to be determined by the DLM(+) and the forcing amplitude ,4 is

given by the explicit relation (21).

2.2 Results

The model described in the previous section has been extensively tested and com-

pared to other models (the original dynamic model: DM; the constrained dynamic

localization model: DLM(+), and the DLM(k)) for forced and decaying isotropic
flows. We will not discuss in detail the conditions of these simulations which are the

same as those presented in previous reports (Ghosal et al. 1993 and Ghosai 1993).

Fig. 1 shows the result of a simulation performed using 48 grid points in each
direction. This seems to be the smallest simulation that would be consistent with

the condition implicit in the idea of LES, viz., that the subgrid scales should carry

significantly less energy than the resolved scales.
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FIGURE 2. Prediction of Kolmogorov's 5/3 law and the Kolmogorov constant in

forced isotropic turbulence at steady state _ : DLM(k); +: DLM(+); .... :
DM; ........ : DLM(S).

All four models predict decays in the resolved energy that are in good agreement

with the experiment (Comte-Bellot and Corrsin 1971).

In the asymptotic self-similar regime the energy decays as a power law E _ t-% It

is not clear that such a self similar regime is reached in the present experiment since

only three experimental points are available. However, the three experimental points

almost lie on a straight line on a log-log plot. The decay exponent is thus estimated

to be _ _ 1.20. A least-square fit to the LES data yields the values _ = 1.27, DM;

= 1.21, DLM(+); a = 1.28, DLM(k); a = 1.17, DLM(S). The predictions of LES

axe in good agreement with the value estimated from the experiment. These values

are slightly lower than those obtained in the higher resolution LES with spectral

eddy viscosity by M_tals & Lesieur (1992). Results of running the simulation with
no subgrid-scale model are also presented.

The average energy spectrum E(x) is obtained in forced turbulence. Fig. 2 shows

C,_ = e -2/3 KS/3E(x) plotted against the wavenumber x. According to Kolmogorov's

5/3 law (Kolmogorov, 1941), C_ should be a constant in the inertial range. It is seen

that the dynamic models with backscatter agree better with the 5/3 law than the

purely dissipative models. Our best estimates for the Kolmogorov constant based on

DLM(k) and DLM(S) axe C_ _ 1.8 and C, _ 1.6 respectively. The experimentally

measured values of Cn are in the range 1.3 - 2.1 (Chasnov, 1991), though 1.5 is the
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FIGURE 3. The level of backscatter as measured by energy transfer in forced

isotropic turbulence at steady state _ : DLM(k); ........ : DLM(S) and .... :

as measured by fraction of points that have negative eddy-viscosity in DLM(k).

commonly accepted value (Saddoughi & Veeravalli, 1994). The spectra predicted

by the DM and DLM(+) are almost identical to each other, and they seem to decay

somewhat faster than the 5/3 law. As expected these models without backscatter

seem to be too dissipative.

Fig. 3 shows the level of backscatter measured in two different ways. The solid

line is the amount of energy being transferred from the subgrid to the large scales

as a fraction of the net transfer as measured by

If riJS_._dBxl
for the DLM(k)

5!

_g_ - 5!
for the DLM(S)

The dotted line is simply the fraction of grid points at which the Smagorinsky co-

efficient is positive (only for the DLM(k); in the DLM(S) C is constrained to be

positive). Here, we notice a substantial difference between the two models account-

ing for backscatter. The deterministic DLM(k) predicts a much smaller amounts of

backscatter than the stochastic DLM(S).
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3. Future plans

The first test of the DLM(S) has shown that this model is able to reproduce most

of the feature of isotropic turbulence. However, the way backscatter is accounted for

does not seem to play a major role in the present simulations. The main difference

in the predictions obtained by these models concerns the rate of backscatter which

is significantly higher in the DLM(S) than in the DLM(k). However, it may be

unsafe to conclude that one of the models performs better from this difference.

Indeed, there is not a lot of measurement of backscatter rate, and in addition, this

rate has been shown to be filter-dependent in DNS (Piomelli et al. 1991). Other

performances of these two model are similar.

DLM(S) is cheaper to implement, but the DLM(k) provides more information

since it predicts the subgrid-scale energy as well as the pressure. Complex flows

could differentiate further between these models, and the next step in the valida-

tion of the stochastic model will be to implement it for more complex geometries.

Preliminary work in the channel flow (Cabot, 1994) has shown that a slightly mod-

ified version of the DLM(S) from which the pressure totally disappears could be

implemented more easily than the formulation presented here. The advantage of

developing a model without explicit need of the pressure is obvious in complex

geometries in which the pressure has to be obtained by a "Poisson solver". We

thus plan to further develop this modified version of the DLM(S). Further tests in

channel flows and mixing layer should follow.
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Large-eddy simulation of a plane wake

By S. Ghosal AND M. Rogers 1

1. Motivation and objectives

In a previous report (Ghosal et al., 1992, 1994) the theoretical development

leading to the dynamic localization model (DLM) for large-eddy simulation (LES)

was presented. The method has been successfully applied to isotropic turbulence

(Ghosal et al., 1992, 1993, 1994, Carati et al., 1994 - see also the report in this

volume), channel flow (Cabot, 1993 - see also the report in this volume) and the

flow over a backward-facing step (Akselvoll & Moin, 1993a & b). Here we apply

the model to the computation of the temporally developing plane wake. The two

main objectives of this project are:

(A) Use the model to perform an LES of a time developing plane wake and com-

pare the results with direct numerical simulation (DNS) data to see if important

statistical measures can be reliably predicted. Also, to provide a relative evaluation

of the several versions of the model in terms of predictive capability and cost.

(B) If the tests in (A) show that the model generates reliable predictions, then

use the LES to study various aspects of the physics of turbulent wakes and mixing

layers.

According to the notation introduced earlier (see the references above), we rec-

ognize four versions of DLM:

(1) Dynamic model (DM): Special case of the DLM applicable only to flows with

homogeneous directions.

(2) Dynamic localization model (constrained) [DLM(+)]: A limited version of the

more general DLM, explicitly prevents backscatter by enforcing a positivity require-

ment on the Smagorinsky coefficient.

(3) Dynamic localization model (k-equation) [DLM(k)I: Extended version of DaM

that incorporates backscatter by introducing a budget equation for the sub-grid

kinetic energy.

(4) Dynamic localization model (stochastic) [DLM(S)]: Alternate extension of DLM

that incorporates backscatter by a stochastic term.

Tests of the DM and DLM(+) will be presented in this report. The more elaborate

models DLM(k) and DLM(S) that incorporate backscatter have not yet been tested

for this flow. In the next section we briefly review the two versions of the model

tested. No derivations are presented here; the reader is referred to the appropriate

references (Ghosal et al., 1992, 1994, and references therein) for the underlying

theory.

1 NASA Ames Research Center

I_TE_ J,0__LLY BLAr,II_:
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2. Accomplishments

2.1 Background

2.1.1 The dynamic model (DM)

In its present form, the dynamic model can be written in the following way. For

homogeneous turbulence the coefficient C is constant in space (but it may be time
dependent) and is given by

c(t)- (m iL i>
<mktr k,>" (1)

Here Lij__= u iuj - uiu) is the Leonard term and mii = A21 _lSij - _x2 i-_l_ij, where

_i and Sij are the filtered velocity and strain rates and the 'hat' denotes the "test

filtering" operation:
P

j v (x, y)/(y)dy. (2)

The 'grid-level' filter-width is A (usually taken to be of the order of the grid spac-

ing) and _ (_ > A) is the 'test-level' filter-width. The angular brackets denote

averaging over the volume of the domain.

For flows that are not completely homogeneous but have one or two homogeneous

direction(s) the DM can still be applied provided one assumes that the "test filtering"

operation is performed only in the homogeneous direction(s). Such an assumption

can be justified if the grid in the inhomogeneous direction(s) is so fine that the flow is

fully resolved in that direction, but in general it is not strictly valid. If one considers

a flow (such as the plane wake considered in this report) that is homogeneous in

the x - z plane but inhomogeneous in y, then the DM can be written as

C(y,t)- (mktmkl)xz" (3)

where the angular brackets now denote averaging over the homogeneous x - z planes.

A serious problem with the DM is that it can be applied only to homogeneous

flows or (under additional assumptions) to flows with at least one homogeneous

direction. This deficiency is removed by the DLM described next.

_.I.e The dynamic localization model: constrained [D£M(+)]

In DLM(+) one obtains C(x) as a function of position at each time-step by solving

an integral equation

C(x) = [f(x) + / lg(x,y)C(y)dy] +

where the suffix "+" indicates the positive part and

l [_ij(x)Lij(x)-_ij(x) f Lij(Y)G(y,x)dy]f(x) =

(4)

(5)
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and

/C(x, y) = ]_A(X, y) +/CA(y, x) -- K:s(x, y)

_A(X, y) = _U(x)/_U(y)G(x, y)

(6)

(7)

/.

K;s(x, y) =/_j(x)/_ij(y) J G(z,
x)e(z, Y) dz. (s)

In these expressions G(x, y)is the "test filter" oqj = -2F,21 l u, Z,j = -2/',21SlS i
and Lij is the Leonard term.

The principal weakness of DLM(+) (as well as the DM) is that the restriction

of C to only positive values is somewhat contrived because it does not account for

backscatter. However, unlike the DM, the DLM(+) is completely general and can

be applied to arbitrary inhomogeneous flows.

2.1.3 The problem of the temporally developing wake

In a temporally developing wake the flow is statistically homogeneous in the

streamwise (x) and spanwise (z) directions and inhomogeneous in the normal (y)

direction. The governing equations are the incompressible Navier-Stokes equations

with periodic boundary conditions in x and z. In the y-direction the domain is

infinite and the velocity field is assumed to asymptotically approach the free-stream

velocity, which can be taken as zero in a suitably chosen reference frame. This

system can be considered to be an approximation to the physically more interesting

spatially developing wake. If one imagines a 'box' being advected downstream

at the 'free-stream' velocity, then the motion of the fluid in the imaginary box

approximates a temporally developing wake. The integrated mass flux deficit

p = -/+_ 5U(y)dy (9)

is conserved in a temporally developing wake, as opposed to the momentum flux
deficit

I_, = - ]__(Uoo + 5U(y))6U(y) dy, (10)

which is conserved for a spatially developing wake. Clearly, if the mean velocity

deficit 5U is small compared to the free stream velocity Uoo, then p, ,_ Uoop.

A suitable scale for the velocity is the initial centerplane velocity deficit _U0 =

-(t_U(0))t=0 and a suitable length scale is then p/SUo. The corresponding time

scale is #/(SU0) 2. We will quote most of our results in these units.

2._ Computational methods

The numerical method used is a spectral method in vorticity variables. Both the

velocity and vorticity are periodic in the x and z directions and can therefore be

expanded in a basis of trigonometric functions for these variables. The y-direction

is somewhat more difficult to deal with since the domain is infinite in y. One
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method is to choose a basis of functions that have an infinite support (such as

the Jacobi polynomials coupled with a mapping to the infinite interval) for the

y-direction (Spalart et al., 1991). However, here we use a trick that leads to a

simpler code. We take advantage of the fact that in a wake the vorticity field is

much more confined in the y direction than the velocity field. One then expands

the vorticity in a trigonometric series in y defined over (ymi,,, Ymaz) with periodic

boundary conditions. This is permissible provided that the vorticity is narrowly

confined around y = 0 and effectively decays to zero at the boundaries Ymin and

Ymax. The velocity field is not so confined and cannot be represented in terms

of these trigonometric functions. But once the vorticity field is determined, the

correct velocity field may be obtained by adding a potential "correction" to the

periodic velocity field associated with the vorticity field so as to match the boundary

conditions at y -- +oc. Further dctails of the computational method may be found

in Corral and Jimenez (1993). The method of solving the integral equation to

determine the coefficient C has been described elsewhere (Ghosal et al., 1992, 1994).

The test filter width in these computations was taken to be twice the grid-filter

width, fi_ = 2A, and a 'top-hat' filter was used with a Simpson's rule quadrature.

For initial conditions we take two realizations of 'turbulence over a flat plate'

from DNS data generated by Spalart (1988) and 'sandwich' them to produce a

wake. Physically this corresponds to a situation where two independent boundary

layers exist on either side of a rigid plate and the plate is instantaneously "dis-

solved" without disturbing the surrounding fluid. All the parameters in the LES

are chosen so as to correspond to the "unforced wake" case of Moser and Rogers

(1994) mentioned above.

The LES reported here was performed on a grid of size Nx = 64, Ny = 48, and

Nz = 16. Therefore, all DNS data must first be 'filtered' to the same resolution

as the LES. This is done by truncating the DNS data in Fourier space to the

same number of modes retained in the LES. This filtering procedure is applied to

the initial conditions as well as to all DNS data with which we wish to compare

our LES results. The 'filtered DNS' represents the theoretical best that can be

achieved by any LES. The LES with DM took about 11 minutes of CPU time. For

the DLM(+) the CPU time depended on the level of convergence required for the

solution of the integral equation. We measured the degree of convergence by the

rms error in satisfying the integral equation normalized by the maximum value of

(C)zz. When it was required that the error as defined above should not exceed

10 -4, the DLM(+) used about 18 minutes of CPU time. To test if this level of

convergence was adequate, the simulation was rerun with the convergence criterion

set at 10 -9 . There were no observable differences in any of the computed statistical

measures. For comparison, the high resolution DNS of Moser and Rogers of the

same flow over the same time interval cost about 200 CPU hours. All computations

were performed on a CRAY C90.

2.3 Result8

The gross features of the wake are characterized by the maximum wake deficit

GUm of the mean velocity profile and the 'half-width' b of the wake. The half-width
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FIGURE 2. The product of the wake-width and the maximum velocity deficit as a

function of time using DLM(+) --; DM - - -; No model ...... ; filtered DNS •

is defined here as the distance between the two points at which the mean velocity

deficit is half its maximum value. Fig. 1 shows b2 plotted as a function of the

time t for the LES, filtered DNS, and LES with the subgrid model turned off. The

prediction of the DM is closest to the filtered DNS. The width grows as b ,_ v;/
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0

FIGURE 3. The mean wake velocity deficit in self-similar coordinates using

DLM(+) --; DM - - -; No model ...... ; filtered DNS •

in the self-similar region (t(_Uo)_/# _ 50- 100) as expected. Fig. 2 shows the

product b(gUm) as a function of t. In all cases this quantity exhibits a plateau

during the self-similar period. Note that the Reynolds number Reb = biSUm/v =

2000b $Um/# ._ 2000 in the self-similar period.

Fig. 3 shows the mean velocity profile plotted in self-similar coordinates/_U. =

_V/_Um and y. = y/b for t(_Uo)2/l_ _ 50- 100. In all cases very good self-similar

collapse is observed (even with the subgrid model turned off!). Thus, the mean

velocity profile is quite insensitive to the subgrid model.

Figs. 4 (A), (n), (C), and (D) show the second-order velocity statistics (u2/,
{v2), {w2), and (uv) respectively. Here u, v, and w are the velocities in the x, y,

and z directions, respectively, with the mean velocity subtracted out. The angular

brackets denote averaging over x - z planes. In all cases it is observed that both the

DM and DLM(+) predict the second-order statistics very well. The quality of the

predictions deteriorates significantly if the model is turned off (except for (uv I). The

better agreement for the (uv I profile is to be expected since it is directly related

to the mean velocity profile _U(y) through the x-component of the momentum

equation and we have already seen that t_U(y) is insensitive to the subgrid model.

Figs. 5 (A), (B), (C), and (D) show the second-order vorticity statistics (w_/, (w_),
(w2), and (w_wy) respectively. Here w=, wy, and w= are the vorticities in the x, y,

and z directions, respectively, with the mean vorticity subtracted out. The angular

brackets denote averaging over x - z planes. The agreement of the DM as well as

the DLM(+) predictions with the filtered DNS is seen to be very good. When the
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FIGURE 4A. The mean streamwise intensity of turbulence in self-similar coordi-
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model is turned off the agreement with the filtered DNS is seen to be very poor. The

magnitudes of the enstrophy components are about four times the corresponding

filtered DNS levels. Here one might ask if it is reasonable or useful to use an LES

to predict vorticity statistics since it is known that small scales not resolved by LES

are the primary contributors to enstrophy. Indeed, (w_2), (w_), and (w_) for the
filtered DNS are about a fifth of their levels in the unfiltered DNS. However, good

prediction of vorticity statistics is important because these statistics are a sensitive
measure of the scales close to the threshold of resolution of the LES. The fact that

even vorticity statistics are captured by the LES suggests that all of the resolved

scales and not just the lowest wavenumber modes are faithfully represented in the
simulation. Thus, we use vorticity statistics as a "quality indicator" of the LES

rather than as a quantity of practical importance to the user.

In Figs. 4 and 5 it is apparent that the self-similar collapse is not perfect but

that there is a systematic variation between the curves at different times in the

simulation, even when scaled in self-similar variables. This is the case not only for
the LES, but also for the filtered DNS. This is an artifact of the filtering procedure

itself and can be understood in the following way. The flow evolves self-similarly at

constant Reynolds number Reb = b(SUm)/U (see Fig. 2) in the self-similar region but

the length scales increase in time. Thus, as the flow evolves, the energy spectrum
shifts to the left without changing form. Since the grid size is held fixed, this

implies that more and more of the energy becomes 'resolved' as the spectrum shifts
to lower wavenumbers past k" = 27r/A. Therefore the resolved part of the second-

order statistics increases with time. This is precisely what is observed in the filtered

DNS and LES data and is responsible for the systematic increasing trend during

the self-similar period.
In addition to obtaining quantitative predictions, one also hopes to gain some

qualitative understanding of the large-scale flow structures from an LES. Thus, it

is of interest to see if the model is able to generate structures that look realistic.

As an example a typical contour plot of the v-velocity is presented in Fig. 6 over an
x - y plane. It is seen that Pig. 6(C) (LES with model) bears an overall resemblance

to Fig. 6(B) (filtered DNS) in the sense that it has a similar number of 'eddies' of

approximately similar size and shape. However, Fig. 6(D) (LES without model)

looks qualitatively different from Fig. 6(B) in the sense that it has a profusion of

poorly resolved small-scale structures. A similar statement can be made about
the other flow variables. The times at which the contours are shown in Fig. 6

for the DNS and LES do not correspond exactly, but they are close, varying from

tQSUo)2/# ,_ 62.4 to 66.3, and are in the developed region (see Fig. 1).

It may appear that even though the no-model case (Fig. 6(D)) has far too many
small-scale fluctuations compared to the filtered DNS (Fig. 6(B)), it does resemble

somewhat the full DNS of Fig. 6(A). That this is not the case becomes clear on

examination of the energy spectrum. Fig. 7 shows the one-dimensional spectrum

q2(kz) = kz)l + Io(k_, kz)l 2 + It_(k_, k_)l 2) (11)
kz

at the plane y = 0 for the same fields whose v-contour plots are shown in Fig. 6.
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model ...... ; filtered DNS * ; DNS --

Here ' - ' denotes Fourier-transform in the x - z plane. The filtered DNS is very

close to, but slightly below (on account of filtering in the y-direction), the full DNS,

up to the maximum kx represented in the LES. The LES matches the filtered DNS

closely. However, for the no-model case, energy piles up at the high wavenumbers

because of the lack of a dissipation mechanism, and this results in a 'flat' rather

than decaying energy spectrum. The small-scale fluctuations seen in Fig. 6(D)

are a manifestation of this unphysical 'pile-up' of energy and have no relation to

the true fine structure seen in the highly resolved DNS of Fig. 6(A). Indeed, it is

quite impossible to reproduce the fine structure of the DNS with the vastly reduced

number of modes in an LES, and the 'filtered' DNS is the ideal limit one can hope

to achieve.

In summary, mean velocity profiles plotted in self-similar coordinates are very in-

sensitive to the choice of subgrid models. The prediction of the self-similar growth of

the wake width is improved by the subgrid model, but the results with no model are

nevertheless tolerable. Second-order velocity and vorticity statistics are predicted

very well by both the DM and DLM(+), but the predictions of these statistics

without the model are very poor. The flow structures in the LES have a strong

visual resemblance to those of the corresponding filtered DNS, but this is not the

case if the LES is performed with no subgrid model. The LES represents a very

significant saving in CPU time over the corresponding DNS. The results presented

here suggest that LES can provide accurate predictions when information related

to small-scale structures is not required.
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3. Future plans

In generating the results presented in this report, the "test filter" was imple-

mented only in the x and z directions. This was done as a first step because filtering

only in the homogeneous directions is easiest to implement in the code. However,

there are some serious difficulties associated with this. In situations where the grid

spacings in all three directions are not the same, there is no unique way of defining

the "grid-filter width" A. Some possible choices are

(A) A _-- (/_x./_yAz)l/3

(c) A=max
(D) a = (A,A=) '/2.

The choice (D) may be thought of as a natural modification of (A) when Ay <<

A_, Az. In this case (A) would give an unreasonably small length scale.

Now, if the filtering is done in all three directions, then A_ = 2A_, Ay = 2Ay, and

/_z = 2A_ so that all thepossible choices (A), (B), (C), and (D) give the same value

for the filter-width ratio A/A = 2. It is easily shown that only the combination CA 2

is computed in the dynamic model and that the grid and test filter-widths enter

only as the ratio A/A. Thus when the model is properly implemented with a 3D-

filter, it is unaffected by the choice of filter-width definition. In fact, any filter width

A = f(Ax, A v, Az) where f is a homogeneous function (i.e. f(aAx, bAv,CAz ) =

abcf(A_, Ay, Az)) will yield the same filter-width ratio. This is no longer true if

the filtering is only done in x - z planes as in the current simulations. In this case

£_ = 2A,, /_ = A_, and A, = 2A_, so that (C) and (D) give /_/A = 2. (A)

gives A/A = 22/3, and (B) gives a result that depends on the aspect ratio of the

grid. In the simulations presented here we have chosen /_/A = 2, but the results

change significantly if an alternate value for this ratio is used. These results should

therefore be regarded as preliminary, and more careful tests using full 3D filtering

need to be done before they can be considered reliable.

We would like to test two other versions of the dynamic localization model viz.

DLM(k) and DLM(S). The first one accounts for backscatter by means of a budget

equation for the subgrid kinetic energy (Ghosal et al., 1992, 1994) while the second

regards backscatter as a stochastic forcing. Apart from being able to represent

backscatter (which may or may not be a significant effect), the DLM(k) has the

additional advantage that it allows one to compute the full subgrid-stress tensor

instead of simply the deviatoric part. This makes it possible to determine the

resolved pressure, a quantity that cannot be determined if only the deviatoric part
of the stress is known.

Both DNS and experiments on plane wakes show a range of growth rates that

seem to be sensitive to initial conditions (Moser and Rogers, 1994). It has been

proposed that this could be due to the existence of non-unique self-similar states,

any one of which can be selected in a given realization depending on the initial

conditions (George, 1989). In order to investigate such possible dependence on

initial conditions, Moser and Rogers (1994) amplified the 2D components of the

initial velocity field in their simulation. It has been found that it is possible to
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significantly alter the growth rate by such "2D forcing". We would like to check if

LES is able to predict correctly the growth rates in such forced wakes. If it does,
then LES can be used as a research tool to test whether alternate self-similar states

are indeed sustained. This requires long-time simulations that are prohibitively

expensive using current DNS.
We would like to thank Dr. Parviz Moin for his critical comments on an earlier

version of this manuscript.
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Local dynamic subgrid-scale
models in channel flow

By W. Cabot

1. Motivation & objectives

The dynamic subgrid-scale (SGS) model (Germano et al., 1991) has given good

results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow,

and in the LES of channel flow, using averaging in two or three homogeneous di-

rections (the DA model). In order to simulate flows in general, complex geometries

(with few or no homogeneous directions), the dynamic SGS model needs to be

applied at a local level in a numerically stable way. Channel flow, which is in-

homogeneous and wall-bounded flow in only one direction, provides a good initial

test for local SGS models. Tests of the dynamic localization model (Ghosal et al.,

1993) were performed previously in channel flow (Cabot, 1993) using a pseudospec-

tral code (Kim et al., 1987), and good results were obtained. Numerical instability

due to persistently negative eddy viscosity was avoided by either constraining the

eddy viscosity to be positive or by limiting the time that eddy viscosities could

remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk

model, however, was too expensive to run in the pseudospectral code due to a large

near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was

then to implement the DLk model in a second-order central finite difference chan-

nel code, in which the auxiliary k equation could be integrated implicitly in time

at great reduction in cost, and to assess its performance in comparison with the

plane-averaged dynamic model or with no model at all, and with direct numerical

simulation (DNS) and/or experimental data.

Other local dynamic SGS models have been proposed recently, e.g., constrained

dynamic models with random backscatter (Carati & Ghosal, in this volume), and

with eddy viscosity terms that are averaged in time over material path lines rather

than in space (Meneveau et al., 1994). Another objective was to incorporate and

test these models in channel flow.

2. Accomplishments

2.1 Dynamic localization models in a finite-difference channel code

2.1.1 Implementation _ ca_es

Dynamic localization (DL) models (Ghosal et al., 1993) were implemented in a

finite-difference code with second-order central differencing on a staggered mesh

and a third-order Runge-Kutta time integration and were used to simulate channel

flow for different friction Reynolds numbers, Rer = Ur6/U, where u is the molecular

viscosity, 6 is the channel half-width, and the friction speed ur is the square root of

li_ilO_iO_'wR_P,WG_.DL;_NK,INOT F_,MF_I_
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the wall stress. Sinmlations were also performed using the plane-averaged dynamic
(DA) model and no model at all.

In the standard dynamic model, the residual Reynolds stress that appears in the
Navier-Stokes equation,

ri_ = uiuj - u_uj (1)

(where the overbar denotes the grid filter) is modeled with a Smagorinsky base

model (-2C_X21SIS,j, where S is the strain tensor and A the grid filter width).
The dynamic coefficient C is found by minimizing the error between the "Germano

identity",
A A

Lij = UiUj -- UiUj (2)

and its model terms (the caret denoting a test filter at a coarser scale than the grid
filter). The error is thus

Eij = Lij + 2c 21SlS, - 2c 21 19ij, (3)

where, in practice, zX = 2A is chosen. In the DA model, C is a global coefficient

(independent of the homogeneous directions) that is found algebraically by a simple
least-squares minimization of error (Lilly, 1992). In the DL model, local values of C

are found by a global minimization using an iterative procedure. In the constrained
dynamic localization (DL+) model, the minimization is subject to the constraint

that the dynamic coefficient not be negative. Except for one simulation case, no

explicit filtering was performed in the inhomogeneous wall-normal direction, and

the error minimization to determine the dynamic coefficient is always performed
independently in individual horizontal planes. Tophat filters were used in all the
cases discussed here.

In the unconstrained (DLk) model, an auxiliary equation for the SGS residual

kinetic energy is evolved, which itself contains additional dynamic coefficients for

diffusion and dissipation terms. In the finite difference code, the dissipation term
in the k equation, -Ck(x)k3/2/A, was integrated implicitly from fractional time

step j to j + 1 by time-splitting only a linear factor of k in the expression with the

remainder evaluated at the prior time step n, viz., -1/2(k [j+l] + kfJl)(Ckkl/2/A)[n].

Since Ck > 0, the latter term acts like a positive diffusion rate, making the implicit

integration stable even for large time steps. As one expects physically, Ck varies
roughly as y_3 near the walls; and, as found in the pseudospectral code, k varies

roughly as y2 even though the numerical boundary conditions only enforce a linear
wall behavior (cf. Cabot, 1993).

2.1.2 Computational costs

With the DLk model, time steps approaching the convective CFL limit would

now be possible with the partial implicit method were it not for large negative eddy

viscosities that now arise and that must be integrated explicitly. This limits the

time step, becoming a much more severe problem at higher ReT. For the DA and
DL+ model, the (mostly) positive eddy viscosity is integrated implicitly and does
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not affect the time step. The cost per time step using the DLk model (when the

dynamic coefficients are computed at each time step) is about twice that for the

DA model. At Re,- = 400, the time step also had to be 2.0 to 2.5 times smaller for

the DLk model. At Re_ = 1030, the time step had to be reduced five-fold. Some

expense was saved in this case by computing the dynamic coefficients every other

time step. Also, fewer iterations were needed since the solution changed little from

the prior time step. This resulted in the DLk simulations costing only 40% more

per time step than with the DA model, hence making it seven times more expensive

overall. At larger Re_, one can further reduce costs per step by computing dynamic

coefficients at larger intervals, but the time step must still be taken increasingly

smaller, which may more than offset any such savings. It appears, then, that the

DLk model will generally be several times more expensive to run than simpler SGS

models in this type of code.

2.1.3 LES result_

Channel flow cases were examined using Re_ = 180 in a 47r x 2 × 47r/3 domain (in

units of/5) on 32 x 65 x 32 and 64 × 65 x 64 meshes (giving a spanwise resolution,

in wall units, of Az + = RerAz/6 = 24 and 12, respectively), and for Re,- = 400,

650, and 1030 in a 27r x 2 x 27r/3 domain, on a 64 x 65 × 64 mesh (Az + = 13, 21,

and 34, respectively).

All LES cases for Re_ = 180 on the coarse mesh (32 x 65 x 32) give mean stream-

wise velocities in wall units (U + = U/ur) and streamwise fluctuation intensities

(Urms/U,-) well in excess of the DNS results (Kim et al., 1987), as seen in Fig. 1.

(The DNS velocity fields were filtered by a tophat filter of the same width as the

LES cases.) Even with no model, U + is slightly larger than that for DNS. Also note
that no finite difference simulation at Rer = 180 appears to give a flat log region.

The DA model gives the worst overall results while the DLk model gives somewhat

better results (DL+ results being intermediate). On a finer mesh (64 x 65 x 64)

at Rer = 180, it was found that SGS models have a much smaller effect (Fig. 2).

Values of U + with no model and the DA model differ by about 6% in the log region,

the latter agreeing quite well with DNS results, and the velocity intensities are also

in good agreement with (filtered) DNS results. In contrast, the pseudospectral code

for the same parameters and domain size on a 32 x 65 x 32 mesh gives U + 15%

below DNS results in the log region with no model and gives good agreement with

the DNS results with any dynamic SGS model (Cabot, 1993). Conventional wisdom

has it that spectral resolution is about twice that of finite differences on the same

mesh, so the horizontal resolution for pseudospectral case should be comparable to

that of the finite difference cases on the finer mesh shown in Fig. 2. (However, the

wall-normal resolution for the Chebyshev expansion in the pseudospectral code and

that for the second-order finite difference are probably different. Dealiasing is also

usually employed in the homogeneous directions in the spectral codes.)

For Re_ = 400 (Fig. 3), the LES with no SGS model again gives U + about

6% below DNS (J. Kim, private communication) and the log law (U + = 5.0 +

2.5 in y+); including the SGS models causes U + to rise close to the log law and DNS.

Values of resolved velocity fluctuation intensities, with or without SGS models,



146 Cabot

(a) ....----I--

- _ I I ! I i I I il i i i i i i ilJ

........ '2 ....... ,o,

. . • • I .... I • I J | i | i , , l i i , i

0.0 20.0 40.0 60.0 80.0 100.0

(c) .._..,___.....- - ..

..9 .... I .... i i , , i I i , , , i , , _ ,

I

0.0 20.0 40.0 60.0 80,0 100.0

y+

FIGURE 1. Mean streamwise velocity (a), resolved velocity intensities (b,c), and

resolved Reynolds stress (c) for the LES of Re,. = 180 channel flow with the second-
order finite difference code on a coarse mesh as functions of distance from the wall

(all in wall units): .... Log law, U + = 5 + 2.51ny+; ........ DNS (filtered); and

LES with ----- no SGS model, -- DA model, .... DL+ model, and ----- DLk
model.
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FIGUaE 2. Mean streamwise velocity (a), resolved velocity intensities (b,c), and

resolved Reynolds stress (c) for the LES of Re_ = 180 channel flow with the second-
order finite difference code on a fine mesh as functions of distance from the wall

(all in wall units): Log law, U + = 5 + 2.51ny+; ........ DNS (filtered); and

LES with ----- no SGS model and _ DA model. In (a), LES results from the

pseudospectral code with no SGS model with comparable resolution ( .... ) are

shown; with the DA model, U + lies on top of the DNS results for this case.
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FIGURE 3. Mean streamwise velocity (a), resolved velocity intensities (b,c), and

resolved Reynolds stress (c) for the LES of Re_ = 400 channel flow with the second-

order finite difference code as functions of distance from the wall (all in wall units):

Log law, U + = 5 + 2.51ny+; ........ DNS (filtered); and LES with ----- no

SGS model, -- DA model, and ----- DLk model.
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FIGURE 4. Mean streamwise velocity (a) and resolved velocity intensities (b)
for the LES of Re,. = 650 channel flow with the second-order finite difference

code as functions of distance from the wall (all in wall units): Log law,

U + = 5 + 2.5 lny+; o o o experimental data; and LES with ----- no SGS model,
-- DA model, and ----- DLk model.

agree fairly well with filtered DNS data. DA and DLk model results are almost

indistinguishable. At the higher values of Re,-, with increasingly poorer resolution,

the quality of Urms results degenerates considerably in comparison with experimental

data by Hussain & Reynolds (1970) (Figs. 4 & 5). The presence of SGS models

makes little difference to levels of velocity fluctuation intensities, with Urms becoming
progressively higher than experimental results in the buffer region (peaking at 3.1

and 3.6 for Re,. = 650 and 1030 simulations with the DA model and 3.0 and 3.4

with the DLk model, compared with 2.5 in the Hussaln & Reynolds experiment).
For Re,. = 650 (Fig. 4), U + is about 5% below experiment and log law with no

SGS model; with SGS models it rises to the proper level in the core of the flow but

develops a bump just above the buffer region. At Re,. = 1030 (Fig. 5), U + with no

SGS model is actually on the experimental and log-law curve; additional viscosity
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from the SGS models raises U + about 5% above this.

Note that prior LES with a DA model at Rer ,_ 1400 (using a code that was

spectral in horizontal directions and used unstaggered finite differences in the wall-

normal direction) gave fair agreement between U + and the log law (Cabot & Moin,

1993); it not only exhibited the bump beyond the buffer region, but it also gave

much too large values of Urms, peaking at 3.7. This LES was performed on the

same domain size with a 32 × 125 × 64 mesh (Az + = 46). Piomelli (1993), using a

pseudospectral code, found peak values of Urms of 2.8 and 3.0 for Rer = 1050 and

2000 with Az + = 26 and 40, respectively, with U + in good agreement with the log

law and experimental data.

£.1._ Overall assessmenL

At coarse resolution, the second-order finite-difference scheme appears to have

errors associated with it that act like extra dissipation; this causes the values of U +

in some simulations with no SGS model to give coincidentally good results compared

with DNS results. (The second-order statistics are less impressive.) When a SGS

model is used, its (real) dissipation causes the U + to rise and appear to give worse
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FIGURE 6. Mean eddy viscosity (sealed by the molecular value) and the mean SGS

Reynolds stress (in wall units) from the wall halfway to mid-channel for Re,. = 1030

using the DA model ( _ ) and DLk model ( ----- ).

results. There is some preliminary evidence suggesting that aliasing error in the

second-order finite difference code may at least be partially responsible for these

differences (A. Kravchenko, private communication). This trend persists at finer

resolutions, but there the SGS model makes little difference. Indeed, the mean eddy

viscosity (ut) predicted by dynamic SGS models in the second-order finite-difference

code remains approximately equal to or less than the molecular viscosity even at

the highest Reynolds numbers simulated, whereas the ut/u climbs steadily with

increasing Rer in the pseudospectral code, with peak mean values of about 5 found

at Rer = 1400. This may be caused by the removal of high-wavenumber information

by the second-order finite differencing, just where the dynamic procedure samples

to predict the eddy viscosity.

Mean velocity fluctuation intensities, especially the streamwise component, are

more sensitive to spanwise resolution measured in wall units (Az+), with good

results in the second-order finite-difference code for Az + _ 12, and progressively

worse results for higher values. Pseudospectral codes appear to get comparable

results at roughly half the horizontal resolution. Large excesses in Urms (and deficits

in Wrms) are always associated with a bump in U + outside of the buffer region.

In the low-Re, coarse-resolution LES, the DLk model gives somewhat better

results than the DA model. But at finer resolutions and higher Reynolds numbers,

there is little discernible difference in first- or second-order statistics between them,

even though mean eddy viscosity and Reynolds stresses from the DLk model are

50-100% greater in the buffer region than those from the DA model (Fig. 6).

2.1.5 Wall-normal filtering

Tophat filtering in the wall-normal (y) direction, in addition to plane filtering, was

implemented in the DA model in both finite-difference and pseudospectral codes.
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FIGURE 7. Mean eddy viscosity (scaled by the molecular value) and the mean SGS

Reynolds stress (in wall units) from the wall halfway to mid-channel for Re_ = 1030

using the DA model with A = h and plane-filtering ( _ ) or volume-filtering

( ----- ). Also shown are results from the mixed plane-filtered DA model with

A = 3h/2 ( .... ); the Reynolds stress contribution from the (resolved-scale)

Leonard term £12 is also shown ( ........ ) for this case.

This volume filtering causes second-order errors due to non-commutivity with spa-

tial derivatives (cf. Ghosal &: Moin, 1993). No higher-order corrections were used,

which in principle are needed for the pseudospectral code but not for the second-

order finite-difference code. In both codes the y-dependent dynamic coefficient C(y)

was removed inconsistently from the filter in the model part of Germano identity

(cf. eq.[3]). In one case for the finite-difference code, C was kept consistently in the

filtered expression (requiring the solution of a tridiagonal matrix for C), but this

resulted in only a small (--_5%) correction.

For the pseudospectral code at low Re,, the volume filtering gives eddy viscosities

larger than plane filtering by only about 20% near mid-channel, the two values

approaching near the walls. Results for the consistent version of the volume-filtered

SGS model in the finite difference code are shown in Figs. 7 _ 8 for Re_ -- 1030.
The eddy viscosity is seen to be increased three-fold in the interior of the channel

(Fig. 7), but it approaches the plane-filtered case near the walls where the strain

is greatest. For y/$ < 0.1 (y+ < 100), the residual stress with volume filtering

is greater by less than 10% compared with plane filtering. The enhanced eddy

viscosity from y-filtering has the overall effect of increasing U by a few percent

(making it even worse in comparison with experimental data and the log law; see

Fig. 8), with very little effect on values of velocity fluctuation intensities.

_. 1.6 Explicit grid filtering

Greater numerical accuracy should be obtained in the LES when the grid filter

A applied to the Navier-Stokes equations is much greater than the actual mesh size

h (see Rogallo & Moin, 1984, and references therein). In the previous applications,
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FIGURE 8. Mean streamwise velocity (a) and resolved velocity intensities (b)
for the LES of Re,. = 1030 channel flow with the second-order finite difference

code as functions of distance from the wall (all in wall units): Log law,

U + = 5 + 2.51ny+; o o o experimental data; and LES using the DA model with

/k = h and plane-filtering ( _ ) or volume-filtering ( m__ ), and using the

mixed DA model with _x = 3h/2 and plane-filtering ( .... ).

however, we have chosen A = h in order to minimize computation time, albeit

inaccurate. A simulation with the finite difference code using the DA model was

performed using A = 3h/2 and, now, a test filter _ = 2A = 3h. (Filtering and aver-

aging was performed only in horizontal planes with a tophat filter, and no dealiasing

was used.) Information about the grid filter is communicated to the filtered linear

terms in the Navier-Stokes equation only through the nonlinear Reynolds stress

terms. The resolved Reynolds stress terms are influenced to some extent by the

mesh on which the flow is represented, which effectively cuts off information at

wavelengths shorter than the mesh size. In the standard dynamic model, the resid-

ual Reynold stress depends only on relative differences between the test and grid

filters, with no explicit dependence on the grid filter. Here a "mixed" dynamic SGS
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model was used in which there is explicit dependence on the grid filter.

When the velocity components ui are decomposed into filtered and residual

(mostly small-scale) components, ui + u_, the residual stress can be written

vii = £ij + Cij + 7_iI , (4)

where

ff-ij _ UiUj -- UiUj ,

T_ij t t t t= uiu j -- uiu j

are the Galilean invariant Leonard, cross, and stress terms (Germano, 1986). In the
mixed dynamic model, ,_ij is computed from the resolved field, and the unknown

Cii +'_ij is fitted with a Smagorinsky model using the standard the dynamic model

techniaue. This mode1 has been used successfully by Zang et al. (1993) for flow
over a cavity (although the grid filter was chosen in their case to be the same as

the mesh size).

The LES of channel flow for the Re_. = 1030 case was repeated using this mixed
model with A = 3h/2. It was found that the residual stress contribution from

the Leonard term is much greater than that from the dynamically modeled terms
(Fig. 7). The mean streamwise velocity and the streamwise fluctuation intensity are

seen in Fig. 8 to be in somewhat better agreement with experimental data using the
mixed model than with the standard DA model with A = h, but the streamwise

fluctuation intensity is still too high in the buffer region.

_._ Other local SGS models

_.,_. I Local £agrangian model

An alternative to spatial averaging in complex flows is to use some sort of tem-

poral averaging. Meneveau et al. (1994) as part of the 1994 CTR Summer Program

proposed effectively to average expressions in the dynamic model in time over La-

grangian material trajectories. The local dynamic Smagorinsky coefficient C for the

residual stress is estimated, neglecting (inconsistently) the filtering of C in Eq. (3),
by

Lit ~ CMij, Mij - 2z_21_1_,, - 2,x21_l-S,i , (5)

and, by least-squares fitting over components,

C--, L : M/M : M . (6)

In the "local Lagrangian" model, Meneveau et al. replaced this with

c ~ ILM/IMM, (7)
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Mean eddy viscosity (scaled by the molecular value) from the wall to

= 650 using the DA model ( _ ) and LL model ( .... ).

where ILM and -_MM are values of L : M and M : M averaged over estimated

Lagrangian trajectories. Note that the averaging carries full three-dimensional in-

formation, unlike the DA model in channel flow. ILM was constrained to be positive

to ensure numerical stability, and the time scale was chosen (somewhat arbitrarily)

to be comparable to (ILM)-I/4 A. The sensitivity of results to different Lagrangian

time scales needs to be explored further.

This model was tested in homogeneous flows, and it was also implemented in a

pseudospectral channel code. Simulations of fully developed turbulent channel flow

with Re_. = 650 were performed with the local Lagrangian (LL) model and the

standard plane-averaged (DA) model. It was found that the LL model gave signif-

icantly lower eddy viscosities above the buffer region to about y+ = 200 (Fig. 9),

perhaps due to ejection events from the walls, the memory of which is retained by

the LL model. Wall-normal mixing in C is also evident in its near-wall behavior,

varying as y+2.5 rather than the expected y+3. The lower eddy viscosities in the

LL model resulted in values of U + lower by about 10% in the log layer than those

from the DA model; the streamwise velocity intensity was also slightly lower with

the LL model, peaking at 2.8 compared with 3.0 with the DA model.

A transition case was performed with an initial centerline Reynolds number of

8000 (like the LES by Germano et al., 1991 and prior DNS and LES referenced

therein) using both the LL and DA models. The numerical mesh was refined at

several times, which also required ILM and IMM to be interpolated on finer grids.

The test-to-filter width ratio was held constant, but A = h changed on remeshing,

causing the values of L : M and M : M to shift as well. In order to reduce

transients, ILM and IMM were also rescaled using the plane-averaged values of the

revised L : M and M : M; however, a more general technique is required for more

complex flows. The LL model was generally (but not always) slightly less dissipative

in the transition calculation than the DA model (Fig. 10); the exceptions appear to

be a result of the LL model lagging behind the DA model in responding to higher
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FIGURE 10. SGS dissipation rate of kinetic energy during transition in channel
flow with Re¢ = 8000: * • • DA model, × × × LL model. The mesh was refined at

time t = 200 from 32 x 65 x 48 to 48 × 65 × 64. (All quantities are in units constructed

from the initial mid-channel streamwise velocity and the channel half-width.)

turbulence levels. The LL model also gave a much more pronounced plateau in the

time history of the wall stress in the peak region, which may also be due to the

inherent lag of SGS stresses in the LL model. Both models gave similarly good

results compared with prior LES and DNS (see Meneveau et al., 1994).

2.2.2 Random backscatter model

In order to retain the realistic characteristic of backscatter of energy from the

small, unresolved scales to the large, resolved scales in a local SGS model and

still maintain numerical stability, Carati & Ghosal (in this volume) proposed to

represent the backscatter as a random process while constraining the local eddy

viscosity from the dynamic model to be non-negative (i.e., using the DL+ model).

The amplitude of random forcing is related to the error in determining C locally

from Eq. (3), which will be largest with the DL+ model in regions where negative

values of C would arise in the unconstrained case. In Carati & Ghosal's original

formulation, the amplitude of random forcing A for each component in the Navier-

Stokes equation is given by

A _ = [-3_. (V.E)*/At]+, (8)

where (V • E)* is the divergence-free derivative of the error in Eq. (3), and At is

the time step, corresponding to an energy injection rate by the random forcing of

-u. (V. E)*. Note that only the positive part of (8) is used so that A is defined. To

make V. E divergence-free generally requires the auxiliary solution of a Helmholtz

equation for a quantity related to the residual pressure; it results in a globally

energy-neutral redistribution of the energy injection. The computation is cheaper

(and, in most cases, not greater affected) if the divergence of V • E is retained, in
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which case (8) is replaced by

A2 = [-2u. (V. E)/zXt]+. (9)

While either formulation works well in homogeneous flow, it is found in channel flow

that they generate large enough amplitudes to destabifize the numerical integration.

This is because u contains a large mean flow component, and, when only positive

values of A 2 are retained in (8) or (9), it gives spuriously large values (since large,
A

offsetting negative values are discarded). One can recast -u. (_7. E) as E : S plus

diffusion terms with zero volume average. Neglecting these diffusion terms, one can

recast (9) as

A2 = [2E : _/At]+ , (10)

which gives much lower amplitudes and appears to be numerically stable in the
channel flow code. Equilibrium statistics have not yet been accumulated to deter-

mine the performance of the random backscatter model.

3. Future plans

8.1 LES with random backscatter

Several channel flow simulations will be performed using the constrained dynamic

localization SGS model with random backscatter (§2.3); the resulting statistics will

be compared with those using other SGS models and with DNS and/or experimental
data. The validity of using expression (10) instead of (8) in the framework of the

formulation by Carati & Ghosal (in this volume) will be explored. The present

formulation also assumes isotropy in the random forcing term, which is clearly not

valid near the wails in the channel; a more general formulation will be explored to

address this shortcoming, and, more pragmatically, it will be determined if in fact
the channel flow is sensitive to such details in the forcing.

3.2 Second-order commutation error corrections

The correct governing equations for LES with non-uniform grids should generally
include additional terms due to the non-commutation of spatial derivatives and

the grid filter. Correction terms determined by Ghosal & Moin (1993) will be

incorporated in a pseudospectral channel code and their effects will be determined in
LES of channel flow with explicit volume filtering. The second-order commutation

errors are expected to be the same order as the differencing errors in a second-

order finite difference code, making it unnecessary to include them. However, the
commutation terms will be included in fourth-order finite difference schemes that

are being developed for LES.

3.3 Dealiased finite difference simulations

There is some evidence that aliasing errors in the second-order finite difference
simulations are responsible for some discrepancies with pseudospectrai results. Also,

since the high-wavenumber information in second-order finite differences is known

to be inaccurate, and this directly affects the results from the dynamic procedure,
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simulations need to be crafted in ways that reduce this inaccuracy. Channel flow

simulations will be performed with a second-order finite difference code that uses

dealiasing of nonlinear products; in homogeneous directions this could be done

with spectral methods, but more general procedures are required for more complex

geometries. Most future simulations will be performed with grid filters that are
at least twice the actual grid spacing to improve numerical accuracy of the LES,

and this additional "padding" can in principle be used in the general dealiasing

procedure. It will also be determined if mixed dynamic SGS models with explicit

dependence on the grid filter (§2.1.6) give better results in general than the standard

dynamic model for these cases.
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Unstructured-grid large-eddy
simulation of flow over an airfoil

By Kenneth Jansen

1. Motivation and objectives

Historically, large-eddy simulations (LES) have been restricted to simple geome-

tries where spectral or finite difference methods have dominated due to their efficient

use of structured grids. Structured grids, however, not only have difficulty repre-

senting complex domains and adapting to complicated flow features, but also are

rather inefficient for simulating flows at high Reynolds numbers. The lack of ef-

ficiency stems from the need to resolve the viscous sublayer, which requires very

fine resolution in all three directions near the wall. Structured grids make use of

a stretching to reduce the normal grid spacing but must carry the fine resolution

in the streamwise and spanwise directions throughout the domain. The unneces-

sarily fine grid for much of the domain leads to disturbingly high grid estimates.

Chapman (1979), and later Moin & Jimenrz (1993), pointed out that, in order to

advance the technology to airfoils at flight Reynolds numbers, structured grids must

be abandoned in lieu of what are known as nested or unstructured grids. Fig. 1

illustrates the ability of an unstructured mesh to refine only the near-wall region.

Note the large number of points near the wall (where the fine vortical features need

better resolution) and the coarseness in all directions away from the wall (where the

scales are much larger). The important difference between this approach and the

usual structured grid stretching is that the number of elements used to discretize

the spanwise and streamwise features of the flow is reduced in each successive layer

coming off the wall. This is due to the fact that the elements not only grow in the
normal direction but in the other directions as well. This greatly reduces the total

number of points or elements required for a given Reynolds number flow.

The finite element method can efficiently solve the Navier-Stokes equations on

unstructured grids. Although the CPU cost per time step per element is somewhat

higher than structured grid methods, this effect is more than offset by the reduction
in the number of elements. The use of unstructured grids, coupled with the advances

in dynamic subgrid-scale modeling such as those made by Germano et al. (1991)

and Ghosal et al. (1994), make LES of an airfoil tractable. We have chosen the

NACA 4412 airfoil at maximum lift as the first simulation since this flow has not

been successfully simulated with the Reynolds-averaged Navier-Stokes equations.

Coles and Wadcock (1979) performed a detailed experimental study of this flow.

Subsequently, Hasting and Williams (1987) also performed an experimental study.

Finally, Wadcock (1987) re-examined the Coles and Wadcock data and the Hastings

and Williams data. He synthesized the existing data with some recent measurements

and concluded that the maximum lift configuration for the NACA 4412 airfoil at

Reynolds number based on chord Rec = uooc/v = 1.64 × l0 s is 12 ° angle of attack.

PJiOOIIOSA_I PAGE DLP,_'_ r1_}T _Lr,;_Y._
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Slice 20
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FIGURE 1. A portion of an unstructured grid that illustrates the varying resolution

in the streamwise and spanwise directions in layers coming off the wall. Note that

the y direction has been scaled to allow visualization of each layer.

2. Accomplishments

2.1 Mesh generation

A mesh generator has been developed which achieves special requirements of

large-eddy simulation. These requirements arise from the need to resolve the near-

wall structures. In this region the elements should have a streamwise spacing of

200 wall units (A+ = 200), a spanwise spacing of 50 wall units (A+ = 50), and

a normal direction spacing of 1 wall unit (A+ = 1). A wall unit is a function

of the friction velocity (ur) and, therefore, is also a function of position on the

airfoil. The experimental friction velocity was used to determine the appropriate

spacing in each direction at each point on the airfoil. This fine near-wall spacing

is continued in the normal direction for approximately 30 wall units. Only the

normal direction spacing is allowed to grow in this interval. Once outside of the

near-wall region (y+ = 30), the turbulent scales that need to be resolved become

larger and the grid is smoothly coarsened in all directions. Great care is taken

to ensure a smooth transition as preliminary studies have shown that non-smooth

coarsening in the presence of gradients can greatly reduce accuracy. The domain

can be made reasonably short in the spanwise direction by employing periodicity.

Moin L: Jimendz predicted unstructured or zonal grids of the type described above

would lead to meshes with 1.2 × 106 points for airfoils with a chord Reynolds number

of Rec = 1.0 x l0 s, assuming a span of one-fifth of the chord. The mesh generated
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for this span contains 1.0 x 106 points, which is 20 percent less than the prediction

even though the Reynolds number is 64 percent higher. The additional savings
are the result of the use of the local wall units to determine spacing rather than a

global wall unit assumption as was done in the past (Chapman, Moin & Jimen_z,

and Jansen (1993a)). A structured grid mesh with the same near-wall resolution

would require over 2.6 x 107 points. The difference becomes even more dramatic at

flight Reynolds numbers.

FIGURE 2. The periodic plane of the three-dimensional airfoil mesh (the mesh has

been magnified to show the resolution near the airfoil).

The periodic plane of the three-dimensional airfoil mesh generated for this flow

can be seen in Fig. 2. Note the smooth variation in element size. Note also the rapid

growth in Ay in the wake. This not only reduces the number of points required, but
also reduces stiffness associated with fine spacing in a region of fairly large vertical

flow (large vortical motions shedding off of the tail). Fig. 3 is a plan view of the

grid at approximately 30 wall units off of the upper surface. Note the variation

in spanwise and streamwise spacing as a function of chord position. The figure

has been broken in three pieces to afford a closer look at the very narrow domain.

The spanwise domain has been reduced by a factor of four to allow more rapid

computation of preliminary results presented in section 2.4. This grid contains only

0.25 x 106 points.

2.2 Computer code

The finite element formulation being used in this work is based upon the work
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(a)

(b)

k /

FIGURE 3. Plan view of a slice through a three-dimensional airfoil grid at y+ = 30

from the upper surface. (a) displays the first third of the chord (0.0 < x/c < 0.33),

(b) the second third (0.33 < x/c < 0.67) and (c) the final third (0.67 < x/c <

1.0). Note that the large variation in spanwise and streamwise spacing match the

resolution requirements of the flow locally.

of Jansen et al. (1993b) and Johan et al. (1993). The code was extended to time-

accurate calculations in the past year and was validated by solving the problem

of vortex shedding behind a cylinder. Implicit time integration is required due to

the very high acoustic CFL numbers encountered in flows of this type. Different

integration schemes were studied and the trapezoidal rule was found to be the most

efficient for external flow problems. It should be noted that this time-integration

scheme was observed to be a poor choice for internal flows such as channel flows due

to undamped acoustic waves in a bounded domain. To perform this type of simu-

lation properly would require development of a new time integration scheme that

would damp temporally unresolved accoustic waves. The computational domain of

the airfoil has open boundaries far from the airfoil surface, and no such difficulties
arise in this case.

The code has proven to be very efficient on parallel architectures such as the

CMh. For large problems, such as the one we consider here, very high flop rates

can be achieved (25 MFLOPS per processor). The CM5 has also been a far more

available resource than the Cray C90 in the past year.
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_.3 Filtering operators for the finite element method

The dynamic model requires a "test filtering" operation defined as

f(x) = f f(x')G(x,x')dx'

as part of the procedure to determine the model coefficient (Germano et al. and

Ghosal et al. ). If G is a "top-hat" filter and the above equation is integrated
with Simpson's rule, the filtering operation leads to the following formula for each

internal node A (A = 1,..-, np) in the mesh with np such internal nodes

fA = _(4fA + fA + fA)

where the subscripts E and W denote the point due East and West for node A. In
multi-dimensions the process is simply repeated in each direction. On an unstruc-

tured grid there often is not a point due East or West. Furthermore, the location of
the points that might approximate the due East or West neighbor is not simply de-

termined through a recursive formula as is the case in a structured grid. One could

pre-process these approximate neighbors and store a pointer list for each point in

the grid. This would require additional memory which is unattractive. Also, for

parallel machines this approach is very inefficient. The inefficiency stems from the
fact that the nodal data is scattered among the processors and retrieval of that

data requires substantial communication. The time required to perform these com-

munication operations is often much larger than the time required to perform the
actual calculations on parallel machines. For this reason it is attractive to explore

element-based filtering procedures which minimize the amount of communication

required. Four alternative filtering operators have been developed and are described
next.

Method 1.) Start by obtaining the function at the element centroids, f_, where
the superscript e corresponds to the e th element. Then define the following filter

operation,
nl

? =w0:+  w,Z
i=1

where f_ is the function value at the centroid of the element on the other side of

the i th face (there are n/ such faces for each element), and wi are filter weights.
For example, triangles have three faces, therefore, the filtering operation of a given

function for a particular triangle involves the function value within the triangle and

the function values within the three other triangles which surround it as illustrated

in Fig. 4.

The problem with this method is that it requires an additional data structure to
determine the elements which lie on the other side of each face of a given element.

This data structure is not immediately available from existing finite element data

structures. It could be pre-processed and stored, but this is unattractive. This
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FIGURE 4. In method 1 the dynamic model filter for the function in the shaded

triangle is determined through a weighted combination of the function value within

the shaded triangle and the function values within the triangles which share a face
with it (the 3 white triangles).

method may prove effective for finite volume schemes using an edge-based data
structure.

Method 2.) An alternative approach is to approximate the the filtering operator

by

f(x) = f(x) + k_72f(x) + O(_')
m

which extends the work of Carati (1994) to non-isotropic grids. Here V is a non-

dimensional gradient (i.e. the gradient in a particular direction multiplied by the

discretization width in that direction).

0 i O. 0 k

It is easily verified that this procedure gives the same result as a one-dimensional

top-hat filter integrated with Simpson's rule (m = 3). In general m = d + 2 where

d is the number of space dimensions.
This filter can be evaluated quite rapidly with the finite element method

fA = fA 1 {MBA}-I (jfflNB f, i,,d_-frNBf, i,,ni,,dF )d+2 ""

where N a is the basis function for node A (likewise B can be any node (B =

1,..., np)), {M BA } is the finite element "mass matrix", _ is the spatial domain, F
is the boundary of the domain, and the subscript , in denotes differentiation in the

i th direction multiplied by the length of the element in this direction. Note that

we have included the boundary terms (there will be contributions when f is the

strain-rate tensor due the non-zero strain-rates at the boundaries).

While this method requires more floating point operations than method 1, it

requires no additional data structures (it uses existing finite element data structures)
and very little communication. Algorithms of this type are already coded for the

viscous terms; consequently these operations were easily parallelized.
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The filtering operation defined above requires that all quantities that need to be

filtered must be defined at the nodes. The most commonly used basis functions in

finite element methods are C O continuous piece-wise polynomials. Function spaces

of this type yield gradient quantities (such as the strain-rates) that are discontinuous

at element boundaries. Before the filtering operator can be applied, it is necessary

to project the strain-rates from the elements to the nodes. This is accomplished by
a consistent finite element projection operator

nel

S,J = {MBA}-' _'-'__ NBS_jda.
e_l •

here S A is the strain-rate tensor at node A and S_j is the strain-rate tensor as
defined in element e. Note that the sum is over all the element domains _e (there

are nel such domains).

With the strain-rate tensor globally projected to the nodes, we next interpolate

Sij(x) with the basis functions,

np

s,j(x)= NA(x)S, 
A--1

The above procedure has been implemented in the parallel code. The tests thus

fax have used a "lumped mass" for {MBA}, making inversion trivial. The cost of

the dynamic model calculation of the eddy viscosity is less than one-fifth of a non-

linear iteration. Therefore, even when only performing two non-linear iterations,

the cost of the dynamic model is less than 10 percent of the total cost. This is as
cheap or cheaper than many three-dimensional structured grid filtering operators.

As mentioned before it also requires no additional memory.

FIGURE 5. Generalized box filter for node A is defined as G(x A) = 1 for all the

triangles surrounding node A.

Method 3.) The third method generalizes the notion of a top-hat or box filter
to unstructured grids. Since the element domains do not necessarily form boxes,
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it is more practical to define the filter function for node A as G(x A) = I for all

the triangles which have node A as a vertex (see Fig. 5). In three dimensions this

generalized box filter is an approximation to an ellipsoid (for isotropic grids it is

approximately a sphere). This filter function is easily integrated against the function

we desire to filter with the rectangle integration rule (equivalent to trapezoidal rule

if the function is linear). This method has been implemented and is slightly cheaper
than method 2 but may be less accurate since rectangle rule is less accurate than

Simpson's rule. The new generalized box filter is not formed by structured grid lines,

making Simpson's rule integration impossible. Studies are underway to quantify the
differences between methods 2 and 3.

Method 4.) The fourth method is only appropriate when using a higher-order
function space. Consider for example a one-dimensional quadratic element as shown

in Fig. 6. It is possible to construct a filter from a combination of two interpolations.
In our one-dimensional example the filtered value of a function f at the center of

the element can be a weighted combination of the quadratic interpolation (which

involves all three points) and linear interpolation of the endpoints viz.

f= +
1

and fl can be determined to represent the filter of choice. For example a = i, _ =
_2is equivalent to a top-hat filter integrated with Simpson's rule. Quadrilaterals (in
3

two-dimensions) and hexahedra (in three-dimensions) pose no additional difficulty

as they are constructed from tensor products of these one-dimensional functions.

Triangles and tetrahedra are not quite so trivial but can none the less be constructed

(see Fig. 7). The only difference here is that there is not a node at the center of the
element.

Implicit in this method is the assumption that it is sufficient to calculate the

dynamic model coefficient once in each element. This filtering method is only

meaningful on the interior of the element since at the endpoints (or corners in

multi-dimensions) the different functional representations yield the same value. At
these positions no filtering would be accomplished. This is of little concern for tetra-
hedral meshes since in this case there are roughly the same number of quadratic

tetrahedra as there are nodal points. Therefore, the number of points where the

dynamic model coefficient is evaluated is roughly the same. What has changed is

the point in space where the dynamic model coefficient is calculated. We have sim-

ply moved the position where we evaluate the dynamic model coefficient from the
nodes to the element centroids. The reason for doing this is that no communication

is required to determine the dynamic model coefficient at the centroid using this

method. This approach promises to be far less costly than methods 2 and 3.

e.4 Preliminary simulations

To obtain a reasonable initial condition, the two-dimensional Reynolds-averaged

Navier-Stokes equations were solved with a one-equation eddy-viscosity model.
Three-dimensional turbulence fluctuations from Choi's (1994) structured grid simu-
lation were then added to this two-dimensional Reynolds-averaged solution to obtain

a reasonable three-dimensional starting field.
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FIGURE 6. One-dimensional quadratic element is comprised of three nodes which

quadratically interpolate (bold line) the nodal values of the function f(x). By

eliminating the center node (unfilled circle), a linear interpolant can be constructed

(thin line) from the end nodes (filled circles).

I

0 i.

X

FIGURE 7. Quadratic triangle element is comprised of six nodes which quadrati-

cally interpolate the nodal values of the function f(x, y). By eliminating the center

node on each edge (unfilled circles), a linear interpolant can be constructed from

the end nodes (filled circles).
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FIGURE 8. No sub-grid scale model simulation. Plan view spanwise velocity

fluctuations at approximately 30 wall units away from the upper surface of the
airfoil.

The first simulation was performed with no sub-grid scale model to establish a

baseline case. The plan view of the spanwise velocity fluctuations at approximately

30 wall units away from the upper surface of the airfoil is shown in Fig. 8. Note

the strong fluctuations beginning just after the nose, followed by a calm region and

then continued fluctuations. The calm region is associated with a separation bubble

which was not observed in the experiment. The calculation was discontinued after

it became clear that the separation bubble was not a transient.

t = 0.2

t = 0.3

t = 0.4

t = 0.6

FIGURE 9. Constant-coefficient Smagorinsky model large-eddy simulation. Plan

view spanwise velocity fluctuations at approximately 30 wall units away from the

upper surface of the airfoil at various fractions of flow-over-chord times.
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FIGURE 10. The time step which satisfies the one-tenth of an inertial time scale

criterion as a function of position on the airfoil upper surface.

The second simulation performed utilized a constant-coefficient Smagorinsky model

with wall damping. The additional eddy viscosity caused the flow to stay attached
at the nose, but other difficulties were encountered. Fig. 9 shows a plan view of

the fluctuating spanwise velocity field at approximately 30 wall units away from
the upper surface. The full upper surface is shown at various fractions of flow-
over-chord time. Note that the turbulence is convecting and interacting, but no

new turbulence is being generated in the first two-thirds of the airfoil. The area
of turbulent activity simply moves down the plate until it reaches the separation

zone. Perhaps this should be the expected result as we have provided no distur-

bances to the boundary layer to sustain the turbulence. This simulation lacks the

temporal and spatial resolution to undergo a natural transition. Strategies to force
a cost-efficient transition will be investigated in future work. It is encouraging to

note that the separated boundary layer maintains its turbulence as it should since

it is an absolute instability (boundary layers are only convectively unstable).

A dynamic model simulation is under way. Preliminary results are quite promis-

ing. It seems that the laminar separation bubble at the leading edge that was

observed in the coarse DNS is present at certain times in the dynamic model calcu-

lation. The highly transient separation seems to be causing enough of a disturbance
to maintain turbulence over the entire airfoil upper surface. It is too early to tell if

this disturbance is enough like the tripped boundary layer in the experiment to ex-

pect agreement further downstream. The calculation will be continued, and should

it fail, more precise forcing strategies will be explored.
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2.5 Time-step constraints

The current implementation of the code requires 10 seconds per non-linear itera-
tion on the 128 node CMS. A real challenge in this flow is the very restrictive time

step imposed by the flow in, and immediately following, transition. It is common

when performing large-eddy simulations to choose the time step to be one tenth of

an inertial time scale A_ = _. In this problem, the boundary layer thickness, 6,
and the boundary layer edge velocity, ue, vary with x/c. The effect of this variation

on the desired time step is plotted in Fig. 10. The simulations described above

were calculated at a time step of 2.0 × 10 -4 non-dimensional time units (normalized

by chord and freestream velocity). This time step is only time accurate beyond
-_ = 0.1. At this time step one flow over the chord requires 5000 time steps. It
C

seems clear that time-accurate resolution of the transition process would be very

expensive (experimental trip was placed at x/c = .02).

3. Future plans

3.1 Dynamic model

The new filtering operators developed in section 2.3 should be validated on simple,

well understood flows such as decaying isotropic turbulence. This flow is very

sensitive to errors in the filter width ratio as the decay rate is very sensitive to this

quantity. Certain simple triangulation patterns may lend themselves to a closed
form analysis of the filter width, but mixed triangulations occur in practice. While

studying this problem, we might also examine the influence of the least-squares

stabilization operator and the cost effectiveness of higher order elements.

3._ Transition

The preliminary simulations have demonstrated a need to aid transition of the

flow as was done in the experiment. It would be more efficient to do these studies

on a fiat plate where the mesh could be kept smaller. The goal here is not to give a

spatially accurate transition, but rather to create and sustain turbulence beyond a
certain percent of chord. An accurate resolution of the transition process is a costly

alternative that hopefully may be avoided.

3.3 Improve code performance

New results from Aliabadi & Tezduyar (1994) indicate that further simplification

of the least-squares stabilization operator may be possible. These ideas offer the

potential to reduce the number of floating point operations per time step by a factor
of two. The effect of these simplifications on accuracy must be studied.

3.4 Airfoil simulation

The airfoil simulation will continue to be the main focus of the unstructured-

grid large-eddy simulation program. The above topics are parallel projects that are
designed to constantly improve the quality of the airfoil simulation.
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Large-eddy simulation of flow
through a plane, asymmetric diffuser

By Hans-Jakob Kaltenbach

1. Motivation and objectives

A challenge for traditional turbulence modeling, based on the Reynolds averaged

Navier-Stokes equations, remains the accurate prediction of 'mild', adverse pressure-

gradient driven separation from a smooth surface. Durbin (1994) showed recently
that his modified k - _-model, which carries the wall-normal Reynolds stress as

additional velocity scale, is superior to a variety of more complicated Reynolds

stress models in its capability to predict 'mild' separation.
With this study we want to explore the capability of large-eddy simulation to

predict the separation which occurs on the deflected wall of an asymmetric, plane

diffuser with opening angle of 10 ° . Simpson (1989) points out that 'mild' separation
of a boundary layer under the influence of an external pressure gradient leads to

a growth of turbulent length scales and generally increases the turbulence level.

He emphasizes the role of 'coherent' motion elements for the process of separation.
Smoke visualization has revealed that the zone of mean backflow strongly interacts

with the forward flow in the above layer. In the mean backflow region, the flow

reverses sign quite often, indicating strong intermittency. These features are difficult

to capture with statistical models which are based on mean velocity gradients such

as mixing length approaches. Conversely, one can expect that LES which explicitly
resolves the large motion elements should be able to correctly represent this aspect

of separated flows.
The flow through the plane diffuser - which is depicted in Fig. 1- exhibits some

additional interesting physical phenomena which make it a challenging test case.

In addition to 'mild' separation about halfway down the deflected ramp, the flow

is characterized by a small backflow zone with stalled fluid in the rear part of the

expanding section. The turbulent flow entering the diffuser is subject to combined
adverse and radial pressure gradients stemming from the convex curvature. Finally

the flow recovers into a developed, turbulent channel flow in the outlet section.

Obi et al. (1993) provide measurements of mean flow, Reynolds stresses, and

pressure recovery, which were obtained by means of LDV in a wind tunnel. The

details of the experiment and the suitability of the measurements for validation

purposes will be discussed in section 2.4.
The objective of this study is to investigate whether LES with the standard

dynamic model is able to accurately predict the flow in the one-sided diffuser and

to explore the resolution requirements and associated costs.
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FIGURE 1. Computational domain for the plane diffuser. Only a subset of the

actual grid lines is plotted. All streamwise distances are measured as distance from
the entrance of the expanding section in units of 6.

2. Accomplishments

2.1 Numerical method

The numerical method for solving the unsteady, incompressible Navier-Stokes
equations is described in Choiet aI. (1993). Second-order spatial central dif-

ferences on a staggered mesh are combined with a fully-implicit time integration

scheme (Crank-Nicholson) which uses Newton linearization along with approximate

factorization. Approximately 4 iterations per time step are required to reduce the

residual sufficiently when running the code at CFL ranging from 2 to 3. The cost is
therefore comparable to an explicit scheme running at CFL smaller than 1. In this

type of flow the CFL-limit is set through the wall-normal velocity in the vicinity of

the rounded entrance corner. For a typical grid of 163 × 64 × 64 cells the code runs

at 350 Mflops and requires 20 ps per cell per time step on a Cray C-90.

Unsteady data, created in an independent LES of fully developed channel flow,

are specified at the inflow plane. A convective boundary condition, i.e. Oui/Ot +

cOu/ax = 0, is applied at the outflow plane, where c is the bulk velocity of the
outlet channel. The upper and lower boundaries are no-slip walls.

A simple, robust version of the dynamic SGS model (Germano et al. 1991) in
combination with least-square contraction (Lilly 1992) and spanwise averaging is

used. The total viscosity is constrained to be positive through a clipping operation.

2._ Grid spacing requirements

The dimensions of the computational domain are shown in Fig. 1. The diffuser

geometry and the Reynolds number Reb = Ub6/v = 9000 match the experimental

configuration of Obi et al. (1993). Here, Ub denotes the bulk velocity of the incoming

fully developed turbulent channel flow of height 26. The flow from the inlet channel

of length 56 enters an asymmetric diffuser with an expansion ratio of a = 4.7 and
an opening angle of approximately 10". The expanding section extends over 426.

The outlet section is too short to cover the full recovery, but no measurements were

reported beyond x = 586. Both corners are rounded with a radius of 8.66. Due

to the high resolution requirements in the spanwise direction, the computational
domain could not be chosen larger than 46, resulting in aspect ratios of inlet and

outlet channel of 1 : 2 and 1 : 0.43, respectively. The experiment had much higher

aspect ratios of I : 35 and 1 : 7.45, respectively.

Previous studies have shown that proper simulation of the near-wall region with-

out employing a near-wall model imposes severe limits on the spanwise grid-spacing.
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With the present numerical method, a spa_wise spacing of _,z + = 15 can be toler-

ated for a canonical boundary layer or a developed channel flow at this Reynolds

number before results deteriorate significantly. Resolution requirements are highest

in the inlet channel where the flow is attached. At Reb = 9000 we expect Rer close

to 500 and a wall-unit approximately 0.0026. We therefore used 128 points in the

span for a width of 46, corresponding to Az + = 15.5, for the inflow data creation

run, but not for the actual diffuser LES.

Span-wise resolution requirements decrease further downstream because of the

increase of a wall-unit due to the channel expansion. Additionally, near-wall physics

change under an adverse pressure gradient and resolution requirements become less

severe. Therefore, the following approach can be justified: the inflow data are

created on a fine mesh; at the inflow plane we use unsteady data which are filtered

onto a mesh which has only half of the spanwise resolution of the inflow creation

run (Az + = 30). We find that this method works quite well and does not give

significantly different results from a ease where the fine spanwise resolution was

carried through the whole diffuser. A similar approach was used by AkselvoU (1994)

for simulation of flow over a backward-facing step.

8oo 7oo 860 9oo

tUl 

FIGURE 2. Time series of spanwise velocity fluctuations from LES at stations

x = 11, 20, 26, 35, 45, and 61, from bottom to top, recorded close to the diffuser

centerline.

_.3 Simulation time requirements

As was the case with the spatial resolution, we find that the flow inside the

diffuser imposes very different requirements with respect to the temporal resolution

in the inlet and outlet sections. The inertial time scale r = 0.5h(x)/Ub(x), based

on local diffuser height h(x) and bulk velocity Ub(x), increases with the square of

the expansion ratio from the inlet to the outlet section, i.e. To=t = a2Vin. In order

to properly simulate the inlet turbulence and due to CFL-limits, the maximum
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time-step is approximately O.lrin. Statistics in the outlet section will converge

after a minimum of 50 ro,t or 12000 time-steps. The total cost of one simulation

is 100 CPU hours, of which 40% were spent reaching a statistical steady state.

The order-of-magnitude time scale change which occurs as the flow slows down

inside the expanding section becomes evident in the time series of spanwise velocity

fluctuations measured at several streamwise locations (Fig. 2).

2.,_ Assessment of the experiment for validation purposes

The experiment by Obiet al. (1993) was done in an open loop wind tunnel facility.

The flow entered the diffuser after a rather long development section of 2006. The

wide aspect ratios of 1 : 35 and 1 : 7.45 for inlet and outlet duct guaranteed a

spanwise homogeneous core flow over 90% of the inlet and 60% of the outlet span.

An increase of mass-flow along the core section of the diffuser was found in the

experiment, see Fig. 3. The rather strong increase (more than 10%) downstream

of x = 40 indicates that a secondary flow develops in the outlet section. It is

unclear whether the flow upstream of x = 406 is affected by this phenomenon. If

not, it can be used for validation purposes of a simulation which assumes spanwise

homogeneity of turbulence to avoid explicitly accounting for side walls.

1.15 "

1.10 -
C_

1.05 -

O 1.00.

0.9# 0 1'0 20 3'0 4"0 54) 60

x/6

dvips FIGURE 3.

profiles over the local diffuser height.

Mass-flow ratio as obtained from integrating measured velocity

Measurements have been rescaled individually for each streamwise location in

order to make them consistent with a constant mass-flow through the inlet duct.

It is probably safe to use data upstream of x -- 40 for validation purposes. Flow

separation occurs a substantial distance (206) upstream of the location with the

mass-flow problem. It seems unlikely that the flow at this location is affected by the

secondary flow in the outlet section. Additional support for this hypothesis comes

from the fact that flow statistics did not change when we performed a simulation

on a domain where the outflow boundary was inside the expanding section.

The secondary flow causes additional pressure losses, which would not be present

in a spanwise homogeneous case. This becomes evident when a force balance for
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a control volume formed by a vertical x, y cross-section and with unit depth is

computed from the experimental data.

Y..4.1 Force balance

An integral force balance indicates whether a simulation has reached statisti-

cal equilibrium and gives insight about the relative importance of frictional losses.

Additionally, a force balance is a good check of the suitability of the pressure mea-

surements for validation purposes.
The control volume for the force balance in the streamwise direction is formed

by a plane through the inlet duet at zin, a plane perpendicular to the fiat wall

somewhere inside the diffuser at zout, and through cuts along upper and lower

diffuser walls. The balance for a volume with unit depth and under the assumption
of constant pressure across the diffuser reads

F. = -Fpr,,.r, - Fyric,,o. - = )Ix.., - Jlx,.

with the (positive) forces defined as

Xou|

F1riction = / rw(l)cosa(1)dl,
Xin

Zout h(x)

P p

= / (pxo,,- J -- p /   ign(U)d 
*J

xln 0

The angle formed by the wall and the horizontal is denoted _. Fig. 4 depicts the
various contributions to the force balance as a function of location xo_,t. The inlet

station was fixed at zi, = -3. For the experiment, no data were available for the
inlet velocity profile and skin friction. We assumed a yl/r power law for the mean

velocity at the inlet, which gives about the right ratio U_,,t/Ub. For the skin friction

we used data from the simulation. As will be shown later the frictional losses play
a minor role in the force balance.

The terms of the right-hand side of the force balance are normalized with the

left-hand side (1.h.s), i.e. the momentum flux difference across the control volume.

Once steady state has been reached, the normalized 1.h.s. should sum up to 100%,

which is approximately the case for the simulation data, independently from where
the control volume is located. A small residual of 2% stems from approximations
involved in the evaluation of the individual forces. The difference in momentum

flux is mainly balanced by the pressure gain throughout the diffuser. Roughly 30%

of the momentum loss is converted into a force acting on the inclined wall. Friction
from the top and bottom walls accounts for less than 5% of the momentum losses.

Even a 20% change in the skin friction changes the overall balance by only 1%.

If we compute the force balance from the experimental data, we find a rather large
residual in the range from 20% to 30% of the momentum flux difference. Possible
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reasons include measurement errors (wrong reference velocity or density for %),

deviations from spanwise homogeneity, and additional pressure losses resulting from

secondary flow in the diffuser outlet. The additional frictional losses which stem
from the diffuser side walls can be neglected because the side wall surface area is

rather small compared to the upper and lower walls of the experimental facility.

The most likely source for the momentum deficit is the use of a wrong reference

velocity for computation of %. In the original data set, mean velocities were scaled

in such a way that the corresponding ratio of centerline to bulk velocity in the inlet
section would be 1.05, which is quite different from the independently measured
value for this ratio of 1.14. The source for this mismatch is obviously the use of

devices (Pitot tube, hot-wire, LDA) which were not properly calibrated or aligned.

Possibly, the same problem appears with normalization of pressure measurements.

However, as discussed earlier, the pressure rise inside the diffuser will be strongly

affected by the presence of a secondary flow. Blockage from side wall boundary

layers increases the velocity in the center of the duct and limits the pressure recovery.
If the momentum deficit was purely caused by usage of a wrong reference velocity,

a 'valid' % curve can be reconstructed by rescaling the measured %. The resealing
factor can be determined by requiring that the residual for the force balance vanish.

Fig. 4 includes the force balance for the experimental data set, which was obtained

when % was increased by 30%. This corresponds to a 14% decrease in reference
velocity. With this correction, the residual drops below 5%.

Despite the problem with the pressure measurements, we think that the exper-
iment is valuable and can be used for validation purposes, at least upstream of

x = 40. From the close coupling between mean flow profile shape and %-curve,
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it follows that it is sufficient to either match the mean flow or the cp-curve as an

indicator for proper prediction of the flow if only one of these quantities is available.

2.5 Simulation results

Flow statistics were obtained by averaging simulation results in time and in the

spanwise homogeneous direction. We compare results from a LES with measure-

ments of Obi et al. (1993).

All data are scaled with the bulk velocity from the inlet channel, Ub,in. The ratio

of centerline to bulk velocity in the inlet channel was 1.10 in the simulation and

1.14 =E 0.02 in the experiment• Profiles of mean velocity are strongly asymmetric

inside of the expanding section, see Fig. 5. The flow remains attached on the flat

wall and separates about halfway down the ramp. The LES exhibits only minimal
backfiow between x = 30 and x = 50 whereas measurements show significant back-

flow downstream of x = 18. Profiles of components of the Reynolds stress tensor are

shown in Figs. 6, 7 and 8. We depict only the resolved motion part of the normal

stresses _ and _ from the LES because the SGS kinetic energy is not explicitly

known in our SGS-model. Fig. 6 shows that the off-diagonal components of the

SGS-stresses are negligible when compared with the resolved scale turbulent shear

stress _-'_.
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Simulated and measured Reynolds stresses agree within some scatter up to loca-

tion x = 14.4 (not shown). Further downstream, the simulation exhibits a much

lower core flow turbulence level than the experiment. Mean flow profiles begin to

deviate at station x = 10. The satisfactory match of simulation and experiment in
the entrance part of the diffuser indicates that the inlet condition for the simulation,

i.e. fully developed channel flow, was adequate. Additionally, we found that this

flow is not very sensitive to the quality of the inflow database. Underprediction of

separation leads to a quicker pressure recovery in the simulation compared with the
(rescaled) experimental data, see Fig. 9.

_..6 Discussion

The outcome of this simulation does not give a clear picture about the success

or failure of LES to predict the flow inside the diffuser. The following discussion is
based on more simulation data than presented in this report. We have performed

a series of simulations on finer meshes where we varied the spacing in all three
directions, for example Az + between 12 and 40. A good measure for the role of
the SGS model in this type of simulation is the contribution of the SGS stresses to

the total energy dissipation rate, which varied from less than 50% on fine meshes

to more than 80% on coarse meshes (see Fig. 10).
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The LES solutions obtained on various meshes differ with respect to pressure

recovery by less than 4% and overpredict cp by roughly 10% when compared with

the rescaled experimental data, see Fig. 9. This proves the capability of the dy-

namic procedure to adapt the role of the SGS model to a given grid resolution.

Our simulations are in this sense 'grid-independent'. We also found that the flow

changes quite drastically (on the coarser meshes) when the SGS model is turned off,

indicating the importance of an adequate SGS model for this type of simulation.

We also checked the sensitivity of results with respect to the spanwise domain

size, which we varied between 46 and 12& Again, the flow inside the diffuser turned

out to be rather insensitive with respect to this parameter.

There is also the possibility of a non-adequate numerical scheme which might have

an even stronger impact on the simulation than specific properties of the SGS model.

Although the discretization of the non-linear term is strictly energy conserving on a
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Cartesian mesh, this property might be violated on stretched meshes. This aspect

is the topic of an ongoing evaluation of the numerical scheme.

3. Conclusions and future plans

We find that LES of flow through the plane diffuser gives a consistent, grid-

independent result. The dynamic model seems to work fine in an adverse pressure

gradient situation although the present simulation underpredicts separation when

compared with measurements. The cost of the simulation is set by the high spatial
resolution requirements of the inlet section and the rather long simulation time

caused by the presence of a very wide range of time scales. Use of zonal techniques

or unstructured meshes (see article by Ken Jansen in this volume) would be desirable

and could strongly reduce the overall cost.
The cause for deviation between LES results and measurements has not been

fully understood yet. The experimental data have some obvious flaws in terms of
momentum balance and mass conservation. However, we are not so much concerned

about the lack of reliable pressure measurements for validation purposes. For the

present flow, the shape of the mean flow profiles is a very sensitive indicator for the

quality of flow prediction and partially compensates for the lack of %.
A fully-resolved DNS for this case would be very costly (in the order of 1000 CPU

hours) but could be done on present computers. This would eliminate all doubts

about the 'right' flow to compare with. We will further investigate this case by

improving the numerics, using schemes with higher-order truncation errors. As a

further goal, we plan to investigate whether a LES with a near-wall model is able
to describe this flow adequately at a much lower cost than the present simulation.
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Large-eddy simulation of a boundary
layer with concave streamwise curvature

By T. S. Lund

1. Motivation and objectives

Turbulence modeling continues to be one of the most difficult problems in fluid

mechanics. Existing prediction methods are well developed for certain classes of

simple equilibrium flows, but are still not entirely satisfactory for a large category

of complex non-equilibrium flows found in engineering practice. Direct and large-
eddy simulation (LES) approaches have long been believed to have great potential

for the accurate prediction of difficult turbulent flows, but the associated computa-

tional cost has been prohibitive for practical problems. This remains true for direct

simulation but is no longer clear for large-eddy simulation. Advances in computer

hardware, numerical methods, and subgrid-scale modeling have made it possible to
conduct LES for flows of practical interest at Reynolds numbers in the range of

laboratory experiments. A handful of these simulations have been performed over

the last few years (cf. Akselvoll and Moin 1993, Zang et al. 1993, He and Song,

1993). Many of these recent simulations were performed to develop LES technology
for complex flows and assess the accuracy of the dynamic subgrid-scaie model. The
indication from these first simulations is that LES in conjunction with the dynamic

model is capable of accurately predicting high Reynolds number complex flows for

which Reynolds-averaged techniques have not been able to produce satisfactory re-
sults. The validation and technology development phase for LES of complex flows

is ongoing, and additional challenging test cases must be attempted. The objective
of this work is to apply LES and the dynamic subgrid-scale model to the flow of a

boundary layer over a concave surface.

Although the geometry of a concave wall is not very complex, the boundary layer

that develops on its surface is difficult to model due to the presence of streamwise

Taylor-G6rtler vortices. These vortices arise as a result of a centrifugal instability
associated with the concave curvature. The vortices are of the same scale as the

boundary layer thickness, alternate in sense of rotation, and are strong enough to

induce significant changes in the boundary layer statistics. Owing to their stream-
wise orientation and alternate signs, the Taylor-GSrtler vortices induce alternating

bands of flow toward and away from the wall. The induced upwash and downwash

motions serve as effective agents to transport streamwise momentum normal to

the wall, thereby increasing the skin friction. Reynolds-averaged prediction tech-
niques are unable to resolve these vortices and must resort to ad hoc correction

terms. Aside from Taylor-G6rtler vortices, concave curvature affects the turbulent

Reynolds stress budget. This effect is captured in full Reynolds stress models but
is absent in the more commonly used algebraic, one- or two-equation models.
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In contrast to Reynolds-averaged approaches, LES is well suited for the concave-

wall boundary layer flow since the Taylor-GSrtler vortices are simulated directly. In

addition, the effects of curvature, not associated with vortices, are captured.

The simulations reported here are designed to match the laboratory experiments

of Barlow and Johnston (1988) and Johnson and Johnston (1989). These exper-

iments are an ideal test case since a rather complete set of velocity statistics are

available for several streamwise stations.

2. Accomplishments

2.1 Numerical method

The computer code used for this project is based on the second-order staggered

mesh finite difference algorithm described by Choi and Moin (1994). The incom-

pressible Navier-Stokes equations are integrated in time with a fully implicit variant

of the fractional step algorithm. Generalized curvilinear coordinates are used in two

directions with the third direction (usually spanwise) restricted to be uniform. In

the fractional step procedure, the dependent variables are advanced in a two-step

process where an intermediate velocity field is first advanced without the pressure

gradient term. The effect of the pressure gradient is then accounted for through a

correction term obtained by solving a Poisson equation. In the current implementa-

tion, the intermediate velocity field is advanced with a fully-implicit scheme where

Newton iteration is used to reduce the factorization error. By taking a Fourier

transform in uniform mesh direction (spanwise), the Poisson equation is reduced

to a series of two dimensional problems, one for each spanwise wavenumber. The

lowest wavenumber system is solved with a direct inversion technique, whereas the

higher wavenumber systems are treated with a Gauss-Seidel iteration scheme. Al-

though the scheme is stable for CFL numbers of at least 5, the time step is usually

dictated by accuracy requirements. In this work, the maximum CFL number is held

below 2.0.

_._ Computational domain and flow conditions

The simulations are designed to match the laboratory configuration of Barlow and

Johnston (1988) and Johnson and Johnston (1989). The experimental facility is a

water channel where a straight entry flow section is fitted to a 90 ° constant radius of

curvature bend (see Fig. 1). The opposite wall is contoured in order to minimize the

streamwise pressure gradient on the concave wall. Boundary layers develop on both

channel walls; one experiences an abrupt transition to concave curvature while the

other experiences a transition to convex curvature. Measurements are available only

for the concave side. Both boundary layers are tripped early on the entry section

and become fully turbulent by the beginning of the curved section. At this station,

the two boundary layers are separated by about 1.5 boundary layer thicknesses of

potential core in the center of the channel. The potential core diminishes with

downstream distance, and the two boundary layers merge between the 75 ° and 90 °

stations. The momentum thickness Reynolds number at the beginning of the curve

is Re0 = 1300. At this station, the ratio of boundary layer thickness to radius of
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FIGURE 1. Computational domain. All dimensions are referred to the boundary

layer thickness measured at the location where the curvature begins (60). The radius

of curvature is R = 18.160.

curvature, 6o/R, is 0.055, which is sufficiently large to create significant curvature

effects.

The computational domain is an abbreviated version of the experimental geom-

etry. A sketch is provided in Fig. 1. The calculation begins approximately 10

boundary layer thicknesses upstream of the curved section and ends at the 75 ° sta-

tion (the boundary layer thickness measured at the onset of curvature, 60 is used

as the normalizing length scale). Unsteady turbulent boundary layer data are sup-

plied at the inflow boundary whereas a convective boundary condition is used at the

outflow boundary. The domain extends 260 in the spanwise direction and periodic

boundary conditions are used in this direction. According to the experimental mea-

surements, the spanwise width is sufficient to enclose 4 streamwise Taylor-GSrtler

vortices. Only the concave boundary layer is simulated, and consequently the do-

main extends from the concave wall to the streamline that lies along the channel

centerline. No slip conditions are applied at the solid wall whereas impermeable

and no-stress conditions are applied at the upper boundary. The position of the

streamline boundary is determined by conducting an inviscid analysis of the exper-

imental geometry. The displacement effects of both boundary layers is accounted

for in this analysis.

The computational grid contains 358 x 44 x 64 points in the streamwise, wall-

normal, and spanwise directions respectively. The mesh is stretched in the wall-

normal direction and uniform in the other two. The grid spacings, based on wall

units at the location where the curve begins, are /%x + = 50, /%y+in = 1, and
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Az + = 16.

2.3 Inflow boundary data

A spatially-evolving simulation such as this one requires the specification of in-

stantaneous turbulent data at the inflow boundary. Accurate inflow data is required

to insure that the boundary layer is fully turbulent and in equilibrium at the begin-
ning of the curve. Instantaneous inflow data is generated via an auxiliary large-eddy

simulation of a flat plate boundary layer. This simulation is also spatially evolving,

but makes use of Spalart's method (1988) to generate its own inflow data by rescal-

ing the data at the exit station. The resolution of the inflow simulation is identical

to that of the main simulation. The inflow simulation is run in parallel with the
main simulation in a time-synchronous fashion. At each time step, the velocity field

is extracted from an appropriate y - z plane in the inflow simulation. This data is

used directly as the inflow boundary conditions. In practice, the inflow simulation
can be either run at the same time as the main simulation or run ahead of time and
the inflow data stored on disk. The inflow simulation increases the overall cost of

the main simulation by about 10%.

2._ Simulation results

Before sampling statistics, the simulation is run for an initial transient elimina-
tion period of 45 boundary layer inertial time scale units (1.2 flow-through times).
Statistics are then sampled over a period of 150 inertial time scales (3.9 flow-through

times). Mean quantities are formed by averaging over both the spanwise direction
and time.

The pressure distribution on the concave wall is compared with the experimental

measurements in Fig. 2. The curve begins at x = 0, and thus negative values of x

correspond to the flat entry section. Overall, the pressure is reasonably constant.

The largest pressure gradient occurs near the start of the curve. This is due to

slight errors in the contour applied to the upper streamline. Since the streamline

was determined through an inviscid analysis of the experimental configuration, it is
quite likely that a similar pressure signature exists in the experiment. Unfortunately

no detailed measurements are available in the region near the start of the curve.

The maximum deviation from uniform pressure is roughly 2%, which probably has

a negligible effect on the boundary layer development. Aside from the pressure
variation near the start of the curve, there is a small uniform drop in pressure with

streamwise distance. This is due to a slight acceleration of the core flow resulting

from errors made in the estimate for the boundary layer displacement thickness

used to determine the upper streamline. The enhanced pressure drop near the
downstream boundary is due to inaccuracies in the outflow boundary condition.

Mean velocity profiles at several streamwise stations are compared with the ex-
perimental data in Fig. 3. The first station is on the flat inlet section, 8 boundary

layer thicknesses ahead of the curved section. The next 4 stations are at 15°, 30 °,

45 ° , and 60 ° (4.7, 9.5, 14.2, and 18.9 boundary layer thicknesses into the curved

section). The velocity data are normalized with the velocity profile that would be

developed by an inviscid flow through the curved section. To a good approximation,
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FIGURE 2. Pressure distribution on the concave wall. The curve begins at x =

0. 60 is the boundary layer thickness at x = 0. -- : LES; * : Johnson and

Johnston (1989); • : Barlow and Johnston (1988). In the experiments, the pressure

is determined indirectly from the velocity measured in the potential core region.

this profile varies linearly according to

Up(y) '_ Vpw(1 + y/R), (1)

where Upw is the inviscid velocity that would be achieved at the wall. Overall, the

agreement between simulation and experiment is quite good. On the flat section,

the simulation produces profiles that are a bit fuller near the wall as compared

with the experiment. This discrepancy is related to the grid resolution and can be

reduced by refining the streamwise and spanwise mesh spacings. The current level

of agreement is deemed acceptable, however. The initial discrepancy fades in the

curved section. Note the difference in the shape of the profile between the flat and

60 ° stations (first and last curves in Fig. 3). The effect of concave curvature is to

create fuller profiles, especially close to the wall. This is due to enhanced mixing

resulting from the effects of curvature.

Reynolds shear stress profiles are shown in as the solid lines in Fig. 4 (the dashed

lines will be described below). Overall, the agreement with the experimental data is

reasonable. The simulation does a good job of capturing the qualitative changes to

the shear stress profile that result from concave curvature. The peak Reynolds stress

increases and the profile develops a bulge in the central region of the profile. On a

quantitative level, however, the simulation tends to under-predict the peak Reynolds

stress, especially at the 45 ° and 60 ° stations. The reason for this discrepancy is not
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FIGURE 3. Mean streamwise velocity profiles. The velocity is scaled by Up(v) (Eq.

(1)), the streamwise profile that would be developed in an inviscid flow through

the curved section. The first station is on the flat inlet section, 8 boundary layer

thicknesses ahead of the curve. The next 4 stations are at 15 °, 30 °, 45 °, and 60 °

respectively. _ : LES; • : Johnson and Johnston (1989).

fully understood, but there is some evidence that it is related to the details of

the inflow conditions. An example of the sensitivity to inflow conditions is shown

by the dashed lines in Fig. 4, where an alternative set of inflow data is used. In

this case, inflow is generated from a parallel-flow boundary layer simulation. The

instantaneous velocity data from this simulation is rescaled to yield statistics that

are consistent with a spatially-evolving boundary layer. The rescaling operation is

not sufficiently accurate to keep the boundary layer in equilibrium, and a transient

develops near the inflow boundary. This effect is clearly visible in Fig. 4 where the

Reynolds stress is over-predicted at the first measurement station. Although it may

be fortuitous, higher levels of Reynolds stress on the flat section lead to considerably

better agreement with the experimental data at the downstream stations. Future

work will focus on a through understanding of this effect.

Velocity fluctuations are compared with the experiment in Fig. 5. Agreement

with the experimental data is good. Again the qualitative changes to the profiles

resulting from concave curvature are well reproduced. A bulge develops in the cen-

tral portion of each profile. This effect is greatest for the wall-normal and spanwise

fluctuations. On a quantitative level, minor differences exist between the simu-

lation and experiment. Except for the near-wall region of the streamwise profile,

all three velocity fluctuations are generally under-predicted in the simulation. The
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FIGURE 4. Reynolds shear stress profiles. -- : LES, spatially evolving boundary

layer inflow data; .... : LES, rescaled parallel flow boundary layer inflow data;

• : experimental measurements of Johnson and Johnston (1989). The first station

is on the fiat inlet section, 8 boundary layer thicknesses ahead of the curve. The

next 4 stations are at 15 °, 30 °, 45 °, and 60 ° respectively. Upw is an extrapolation

of the core velocity to the wall assuming an inviscid profile.

reason for this discrepancy is not completely understood, but as in the case of the

Reynolds shear stress, it is sensitive to the inflow conditions. Better agreement can
be obtained at the downstream stations if the fluctuation levels are increased at the

inlet. Aside from these differences, the velocity fluctuations are too anisotropic near

the wall; the streamwise fluctuation is over-predicted whereas the wall-normal and

especially spanwise fluctuations are under-predicted. This is a common symptom

of marginal resolution in either a direct or large-eddy simulation. It is caused by an

inability to resolve the inter-component energy transfer mechanism in this region of

the flow. The discrepancy can be reduced by increasing the number of grid points,

but current level of agreement is deemed acceptable.

The calculated skin friction is compared with experiment in Fig. 6. The skin

friction is seen to increase significantly due to the effects of concave curvature. The

simulation captures this trend but also exhibits some quantitative differences with

the experimental data. The simulation results agree best with the experiment on

the flat section ahead of the curve and beyond about 45 ° in the curved section.

In the intermediate section, the simulated skin friction appears to respond more

rapidly than the experiment downstream of the start of the curved section. The

small excursion immediately upstream of the curved section is due to the residual

pressure gradient in this region (see Fig. 2). Skin friction was determined in the

experiment by fitting a log-law to the velocity profiles (Clauser chart approach).

This method is accurate for equilibrium boundary layers but can be in significant



192 T. S. Lurid

1.2

1.0

0.8

0.6

0.4

0.2

0 • • , , .
I 2 3 4 5

1.2

1.0-

0.8-

0.0"

0.4"

0.2-

0
; . ; , .
1 2 3 4 5

1.2

1.0"

0.0"

0.8"

0.4"

0.2"

• °

0 1 2 3 4 5

FIGURE 5. Velocity fluctuation profiles. The first station is on the flat inlet

section, 8 boundary layer thicknesses ahead of the curve. The next 4 stations are at

15 °, 30 °, 45 °, and 60 ° respectively. Upw is an extrapolation of the core velocity to

the wall assuming an inviscid profile. _ : LES; • : experimental measurements

of Johnson and Johnston (1989).
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FIGURE 6. Skin friction coefficient. The curve begins at x = 0. _ : LES,

direct method; • : experimental data of Johnson and Johnston; • : experimental

data of Barlow and Johnston; ----- : LES, Clauser method.

error when applied in non-equilibrium situations. Since the boundary layer is dis-

placed from equilibrium while transitioning from the flat to curved sections, the

experimental skin friction measurements could be in error. In order to assess this

possibility, skin friction was determined from the simulation data indirectly through
use of the Clauser chart. The results of these measurements are shown as the tri-

angles connected with a dashed llne in Fig. 6. As expected, there are significant

differences between the direct measurement and the Clauser method near the onset

of curvature. In particular, the Clauser method measurements fall below the direct
measurements near the onset of curvature and are actually in better agreement with

the experimental data in this region. As the boundary layer comes into equilibrium

further downstream, the Clauser and direct measurements appear to be converging.

_. 5 Conclusions

Large-eddy simulations of a concave-wall boundary layer have been performed.

The simulations make use of the dynamic subgrid-scale model which requires neither

the tuning of model constants, nor the use of ad hoc corrections for curvature.

Concave curvature results in large changes to the turbulent statistics, and LES

does a good job of predicting the transition from a flat wall to a concave surface.

Quantitative differences exist between the LES results and the experimental data,

and these can be attributed in part to the details of the turbulent data supplied at

the inflow boundary. The turbulent flow fields do not reveal strong Taylor-Ghrtler

vortices, a feature that may also be related to the inflow data. In the experiment,

streamwise vorticity is generated by the flow-conditioning devices and is amplified

in the contraction leading to the channel. These vortices may act as effective nuclei
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for the rapid development of Taylor-GSrtler vortices in the curved section. In the

simulations, coherent streamwise vorticity is absent from the outer regions of the
spatially-evolving boundary layer inflow data. Stream-wise vortices are probably

also absent in the outer portion of the parallel flow boundary layer data, although

the rescaling operation results in higher fluctuations in this region of the profile.

In any case, Taylor-GSrtler vortices will develop eventually from the background
turbulence, but the organization process may require a streamwise distance that is a

function of the initial velocity fluctuation level. In order to avoid this uncertainty, it

may be necessary to "seed" the outer regions of the inflow boundary layer with semi-

coherent streamwise vorticity corresponding to the levels existing in the experiment.

3. Future plans

Future work will focus on a careful study of the influence of inflow conditions.

In particular, streamwise vorticity will be introduced to the outer region of the

inflow boundary layer. The flow fields will be examined for the presence of strong

Taylor-G6rtler vortices and the results compared with the existing runs. Once
issues with the inflow data are resolved, the impact of the subgrid-scale model will

be investigated. This will be done by repeating the simulation with no subgrid-scale

model. Differences between the runs with and without the model will help elucidate

the influence of the subgrid-scale model in this flow.

The LES results will also be compared with the predictions of Reynolds averaged

Navier-Stokes (RANS) calculations. Aside from full Reynolds stress closure, RANS

methods have no formal dependence on curvature. Ad hoe corrections are commonly
used to account for curvature and the accuracy of a few of these will be investigated.

Full Reynolds stress models do have a curvature-dependent production term, and
the effect of this term will be investigated.

REFERENCES

AKSELVOLL, K. & MOIN, P. 1993 Application of the dynamic localization model

to large-eddy simulation of turbulent flow over a backward-facing step. In En-

gineering applications of large-eddy simulations, ed. by S. A. Ragab and U. Pi-
omelli. Presented at the ASME fluid engineering conference, Washington D. C.

June 20-24, 1993.

BARLOW, R. S. & JOHNSTON, J. P. 1988 Structure of a turbulent boundary layer

on a concave surface. J. Fluid Mech. 191, 137-176.

CHOI, H., MOIN, P. & KIM J. 1993 Direct numerical simulation of turbulent flow

over riblets. J. Fluid Mech. 255_ 503-540.

HE, J., & SONG, C. C. S., 1993 Some applications of large-eddy simulation to

large-scale turbulent flows at small Math number. In Engineering applications

of larye-eddy simulations, ed. by S. A. Ragab and U. Piomelli. Presented at the

ASME fluid engineering conference, Washington D. C. June 20-24, 1993.



LES of a boundary layer on a concave surface 19,5

JOHNSON, P. L., & JOHNSTON, J. P. 1989 The effects of grid-generated turbulence

on a flat and concave turbulent boundary layer, Report MD-53, Thermosciences

Division, Dept. of Mech. Eng., Stanford University.

SPALART, P. R. 1988 Direct simulation of a turbulent boundary layer up to R0 =

1410. J. Fluid Mech. 187, 61-98.

ZANG, V., STREET, R. L., _ KOSEFF, J. R. 1993 A dynamic mixed subgrid-scale

model and its application to recirculating flows. Phys. Fluids A. 5, 3186-3196.





Center for Turbulence Research
Annual Research Briefs 1994

../Z�

N95-22451

Experimental investigations of
"on-demand" vortex generators

By Seyed G. Saddoughi

1. Motivation and background

Conventional vortex generators as found on many civil aircrafts are mainly for

off-design conditions - e.g. suppression of separation or loss of aileron power when
the Mach number accidentally rises above the design (cruise) value. In normal

conditions they perform no useful function and exert a significant drag penalty.

Recently there have been advances in new designs for passive vortex generators
and boundary layer control. While traditionally the generators heights were of the
order of the boundary layer thickness (8), recent advances have been made where

generators of the order of 8/4 have been shown to be effective: see Gad-el-Hak &

Bushnell (1991) for a review.

The advancement of Micro-Electro-Mechanical (MEM) devices has prompted sev-

eral efforts in exploring the possibility of using such devices in turbulence control.
These new devices offer the possibility of boundary layer manipulation through the

production of vortices, momentum jets, or other features in the flow. However,

the energy output of each device is low in general, but they can be used in large
numbers. Therefore, the possibility of moving from passive vortex generators to

active (on-demand) devices becomes of interest. Replacement of fixed rectangular
or delta-wing generators by devices that could be activated when needed would

produce substantial economies.

One example of an "on-demand" device is the vortex-generator jet originally

proposed by Compton & Johnston (1992), in which an oblique jet is emitted from
a nozzle flush with the surface. This is a simple device; however, it is likely to

be economic only on or near engine nacelles where high-pressure air is available.

Ducting to other parts of an aircraft is likely to involve so much extra weight and
cost that there would be no net economic benefit.

An alternative form of "on-demand" vortex generator, requiring only an electrical

power supply, has been developed by Jacobson & Reynolds (1993) at Stanford

University. It consists of a surface cavity elongated in the stream direction (Fig. 1)
and covered with a lid cantilevered at the upstream end. This kind of a vortex

generator is also called a "springboard" actuator. The lid, which is a metal sheet

with a sheet of piezoelectric ceramic bonded to it, lies flush with the boundary. On

application of a voltage of the order of 10-100V, the ceramic expands or contracts;

although the longitudinal strain is small, the induced bending strain is orders of

magnitude larger. Even so, adequate amplitude can be obtained only by running
at the cantilever resonance frequency and applying amplitude modulation: for 2.5

mm × 20 mm cantilevered lids, they obtained tip displacements of the order of 100
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(a)

narrow wide
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FIGURE 1. A schematic diagram of springboard piezo-ceramic actuator developed

by Jacobson & Reynolds (1993). (a) Side view; (b) Front view.

to 150 pm. As the lid oscillates, fluid is expelled from the cavity through the gap
around the lid on the downstroke.

The breakthrough innovation of the device was achieved using an asymmetrical

gap configuration as shown in Fig. 1 (narrow gap _ 50 to 75 #m and wide gap

250 _um). Their actuator was driven with a 25 V amplitude sine wave at a

frequency of approximately 325 Hz in water. Jacobson & Reynolds found that

periodic emerging jets on the narrow side induced periodic longitudinal vorticity

into the boundary layer. With a vertical cavity wail a vortex pair with common

flow upwards is formed (Fig. 2). The cavity-lid combination developed by them

has the potential to be made using micro-fabrication techniques, which are ideally

suited to mass production. Their device was used to modify the inner layer of the

boundary layer for skin-friction reduction and is now being incorporated into an

active-control feedback system.

Our proposed application is not strictly "active" control: the vortex generators

would simply be switched on, all together, when needed (e.g. when the aircraft Mach
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FICURE 2. Induced actuator flow from Jacobson & Reynolds (1993). (a) Directed

effiux; (b) Diffuse influx; (c) Superposition of (a) and (b).

number exceeded a certain limit). To this extent our scheme is simpler; however, to

promote mixing and suppress separation we desire to deposit longitudinal vortices

into the outer layer of the boundary layer as in conventional vortex generators. This

requires a larger device although an alternative might be an array of smaller devices,

for example, a longitudinal row with phase differences in the modulation signals so

that the periodic vortices join up. The vortex pair with common flow up has the

advantage that it will naturally drift away from the surface, but the disadvantage is

that the net vorticity is zero so that the pair is eventually obliterated by turbulent

mixing, rather than simply being diffused as in the case of a single vortex. It

should be possible to devise alternative shapes of cavity wall so that the jet emerges

obliquely and produces net longitudinal vorticity.

2. Accomplishments

2.1. Apparatus and measurement techniques

We have built a device with a mechanically driven cantilevered lid to avoid the

restrictions of resonant forcing. Our device is made about ten times the size of

3acobson & Reynolds' device because intuition suggested that the optimum ratio

of device size to boundary-layer thickness for our purpose would need to be larger

than in the different task of control of inner-layer turbulence.
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Our vortex generator is made so that shape or size of the cavity and lid (28 mm

× 250 mm) can be easily changed: for example the side walls of the cavity are the

ends of inserts which can be moved in the spanwise direction to alter the gap-width

on one or both sides. The cavity depth (20 ram) can be changed by placing inserts

inside the cavity. The lid frequency can be changed easily by means of a variable

speed DC motor; presently we can obtain a maximum frequency of about 60 Hz for

the cantilever-tip displacement of approximately 10 ram.

As mentioned above, cavity wall inclination may have a large effect on the ejected

vortex pair. Hence our vortex generator is mounted on a turntable so that its yaw

angle can be changed; if the emerging jet sheet is regarded crudely as a solid blockage

of the boundary-layer flow, the jet emerging from a yawed cavity might be a more

effective vortex generator than an unyawed jet. Finally, tests over a range of ratios

of vortex-generator size to boundary layer thickness can be carried out simply by

changing the streamwise location of the device.

Our vortex generator was mounted on the top wall of the 76 cmx 76 cm suction

wind tunnel in the Mechanical Engineering Department at Stanford University.

This wind tunnel is mainly used for flow-visualization purposes. The existing test

section is about 3 m long so that fairly thick turbulent boundary layers can be

obtained at downstream locations in this tunnel.

We conducted extensive flow-visualization experiments at two different free-stream

velocities of Ue _1 m/s and 5 m/s. Here we use a Cartesian coordinate system

xi = (x, y, z) with x-axis along the flow direction, y-axis normal to the solid sur-

face (top wall of the tunnel) and z-axis in the spanwise direction. The respective

mean-velocity components in these directions are Ui = (U, V, W).

Smoke was sucked into the flow by the boundary-layer fluid, through a slot lo-

cated upstream of the vortex generator. A laser-light sheet was used to visualize

the motion in cross-stream (y-z) planes. To document our results, we have taken

photographs and films of the flow patterns around the vortex generator set at differ-

ent orientations to the flow direction; the oscillating tip of the cantilevered lid was

pointed in the (i) downstream, (ii) 45 ° to the downstream, (iii) upstream, and (iv)

45 ° to the upstream directions. Also, tests were conducted for different gap-width

sizes and lid-oscillation frequencies at the above two free-stream velocities. Some

of these flow-visualization results are presented and discussed below.

2.2. Results and discussion

For the first time, we are able to see the vortices that the "on-demand" vortex

generator deposits into the boundary layer. As mentioned above we have taken a

large number of photographs, three of which are shown in Figs. 3, 4, and 5, where

all the pictures show flow patterns in y-z planes (flow out of page). Also, in these

pictures, the wide-gap and the narrow-gap are 1 mm and 0.2 mm respectively. The

lid frequencies were approximately 20 Hz and 50 Hz for the experiments conducted

at Ue _1 m/s and 5 m/s respectively.

In Fig. 3 the vortex generator is pointed in the downstream direction, and the

wide gap in this case is located on the left-hand side of the picture. This is the flow

pattern obtained at Ue ,_ 1 m/s. Fig. 4 shows the flow visualization for the same
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FIGURE 3. Jet sheet ejected from the wide gap at Ue m 1 m/s, when the vortex

generator is pointed in the downstream direction.

FIGURE 4. As Fig. 3 but at Ue _ 5 m/s.
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FIGURE 5. Vortical structure ejected from the wide gap at U_ _ 5 m/s, when the

vortex generator is pointed in the upstream direction.

orientation of the vortex generator, but at U_ _ 5 m/s. It can be seen clearly that

at both free-stream velocities, the jet sheets emerge from the wide gaps only, and

for the high-speed case where the boundary layer thickness at the measurement

location was about 20 mm, the jet sheet extends to approximately 3 to 4 times

boundary-layer thicknesses into the flow.

Fig. 5 shows the flow pattern for U_ _ 5 m/s, but in this case the vortex generator

is pointed in the upstream direction; therefore, the wide gap is now located on the

right-hand side of the picture. Here also we see large ejections from the wide gap
only; however, in this ease we can observe a better vortical structure than the one

shown in Fig. 4. This suggests that a more efficient vortex generation may be

achieved in this way. Our visualizations show that these vortical structures last for

large distances downstream of the vortex generator.

In all of our experiments we observed that the stronger jet emerged from the

wide-gap side rather than the narrow side. This is contrary to the finding of Jacob-

son & Reynolds. In order to explain this difference one may consider the Stokes'

2/_--____/__(Rathnasingham, et al. 1994), where f is the frequency,parameter, St - V _ '

d is the diameter of the circular hole for the "wall-jet" actuators, and l, is the kine-

matic viscosity. Based on dimensional analysis, Rathnasingham,et al. proposed

that for this kind of actuator, St > 1 is required to prevent the blockage of the exit
flow due to viscous effects.
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In the case of the springboard actuators, one may assume d to represent the gap-

width size. In our investigations, for the narrow gap at the highest lid-frequency of
50 Hz, St < 1. Therefore, it appears that for our narrow gap the exit flow is viscous

dominated. This may be the reason that we do not see any flow out of the narrow

gap. However, for the narrow gap of Jacobson & Reynolds' case, St > 1, since their

experiments were conducted in water, and also in their case the lid frequency was

larger than the present studies.

3. Future plans

In order to quantify our conclusions from the flow visualization experiments, we

plan to conduct the following measurements:

(i) To check the efficiency of our device, we need to take spanwise measurements
of skin friction at a few streamwise locations downstream of the vortex generator.

(ii) To obtain a measure of the mean longitudinal vorticity, (_w o_v), we will

take X-wire measurements in x-y and x-z modes (at close enough spacing to obtain

accurate derivatives) in a few cross-sectional locations downstream of the vortex

generator.
(iii) If the above initial tests show strong vortex-generation effects, we will use

our vortex generators in laboratory adverse-pressure-gradient boundary layers to

suppress separation, and eventually we would test them on a full-scale aircraft in
the 80' x 120' wind tunnel at NASA Ames.
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Direct numerical simulations of
"on-demand" vortex generators

Mathematical formulation

By P. Koumoutsakos

1. Motivation and objectives

The objective of the present research is the development and application of effi-

cient adaptive numerical algorithms for the study, via direct numerical simulations,

of active vortex generators. We are using innovative computational schemes to in-

vestigate flows past complex configurations undergoing arbitrary motions. Some of

the questions we try to answer are: Can and how may we control the dynamics of
the wake? What is the importance of body shape and motion in the active control
of the flow? What is the effect of three-dimensionality in laboratory experiments?

We are interested not only in coupling our results to ongoing, related experi-

mental works, but furthermore to develop an extensive database relating the above

mechanisms to the vortical wake structures with the long-range objective of devel-

oping feedback control mechanisms. This technology is very important to aircraft,
ship, automotive, and other industries that require predictive capability for fluid

mechanical problems. The results would have an impact in high angle of attack

aerodynamics and help design ways to improve the efficiency of ships and sub-

marines (maneuverability, vortex induced vibration, and noise).

2. Accomplishments

This is a preliminary report describing our numerical method and presenting
results of direct numerical simulations of pertinent two-dimensional bluff body flows.

Our final objective is the simulation of flows past the three dimensional configuration

shown in Fig. la. At the first stage of this work, we are interested in the respective
two-dimensional configuration (Fig. lb). The results of these simulations would

help us investigate the effects of three dimensionality in experiments and assess the
role of two-dimensional vortical mechanisms.

2.1 Mathematical formulation - numerical method

Two-dimensional incompressible unsteady flow of a viscous fluid may be deter-

mined by the vorticity transport equation as

_- + u-V_ = vV2_ (1)

where u(x, t) is the velocity, w = w ez = V × u the vorticity, and v denotes
the kinematic viscosity. For flow around a non-rotating flat plate, translating with

velocity Ub(t), the velocity of the fluid (u) on the surface of the body (x°) is equal

to the velocity of the body:
U(Xs,t) ---- Vb(t) (la)
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At infinity we have:

u(x) --, u_ as Ixl _ o_ (lb)

where U_ is the free stream velocity. Using the definition of the vorticity and the

continuity (V • u = 0), it can be shown that u is related to w by the following

Poisson equation:

V2u = -V x _o. (2)

The velocity-vorticity formulation helps in eliminating the pressure from the un-

knowns of the equations. However, for bounded domains, it introduces additional

constraints in the kinematics of the flow field and requires the transformation of the

velocity boundary conditions to vorticity form.

2.1.1 Particle/vortex method_

The present numerical method is based on the discretization of the above equa-

tions in a Lagrangian frame using particle (vortex) methods. The vorticity equation
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Eq. 1 may be expressed in a Lagrangian formulation by solving for the vorticity-

carrying fluid elements (xa) based on the following set of equations:

= u(x°,t)
dt (3)
dw
-- = v V2w
dt

In the context of particle methods, it is desirable to replace the right-hand side

of equations Eq. 3 by integral operators. These operators are discretized using the
locations of the particles as quadrature points so that ultimately Eq. 3 is replaced

by a set of O.D.E.'s whose solution is equivalent to the solution of the original set
of equations. To this effect the velocity field may be determined by the vorticity

field using the Green's function formulation for the solution of Poisson's equation

(Eq. 2).

1 /K(x - y) × wdy + U0(x,t) (4)u 2_r

where U0(x,t) contains the contribution from the solid body rotation and Uoo,

and K(z) = z/[zl 2. The use of the Biot-Savart law to compute the velocity field

guarantees the enforcement of the boundary condition at infinity.
The Laplacian operator may be approximated by an integral operator (Degond

and Mas-Gallic, 1989) as well so that:

V2w _ f G_(lx - y[) [w(x) - w(y)] dy

where, in this paper, G, is taken to be G_(z) = (2/_e 2) exp(-Izlz/2e2). The

boundary condition Eq. la is enforced by formulating the physical mechanism it
describes. The surface of the plate is the source of vorticity that enters the flow. A

vorticity flux (O_/On) may be determined on the boundary in a way that ensures
Eq. la is satisfied. Here a fractional step algorithm is presented that allows for the
calculation of this vorticity flux (see also Koumoutsakos et al. 1993). It is shown
then that this mechanism of vorticity generation can be expressed by an integral

operator as well:

dw / 0_d--t" = H(x,y) _n(y) dy (6)

where the kernel H is developed in Section 3. Using the above integral representa-

tions for the right-hand side of Eq. 3, we obtain the following set of equations.

dXadt - 2_1f K(xa - y) x w dy + Uo(L,t)

-- _ v G,(IXa - Yl) [W(Xa) -- W(y)] dy
dt

dca f Ow-- _ v g(xa, y) _n(y) dydt

(7)
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In vortex methods, the vorticity field is considered as a discrete sum of the individual

vorticity fields of the particles, having core radius e, strength P(t), and an individual
distribution of vorticity determined by the function q, so that:

N

.(x,t) = r,,(t) ,1,(x - x,,(t))
n=l

(8)

When this expression for the vorticity is substituted in Eq. 7, the singular inte-
gral operators K,G are convolved with the smooth function q_ and are replaced

by smooth operators K,, G,. These integrals are subsequently discretized using a

quadrature having as quadrature points the locations of the particles. Assuming

that each particle occupies a region of area h 2 and that the shape of the body is
discretized by M panels, then algorithmically the method may be expressed as:

N

dxi _ 1 _ Fdt }-;= ./K,(xi-xj) + Uo(x/,t)

dri N
d--T = " _-_[ri - r/] G,(Ixi- x>t )

j=l

dF i M O_

dt - v Z H(xi,Xm) _--_n(Xrn)
m=l

ri(0) = w(xi,O) h 2 i = 1,2,...,N

(9)

The Lagrangian representation of the convective terms avoids many difficulties asso-
ciated with its discretization on an Eulerian mesh such as excess numerical diffusion.

However the straightforward method of computing the right-hand side of (Eq. 8),
using (Eq. 9) for every particle, requires O(N 2) operations for N vortex elements.

Recently fast methods have been developed that have operation counts of O(N)
(Greengard and Rohkhn, 1987). In the present scheme the efficient vectorization

of the O(N) scheme allows for computations with one CPU minute per velocity

evaluation for one million vortices on a single processor of a CRAY YMP. The ac-
curacy of the method relies on the accuracy of the quadrature rule as information

needs to be gathered from the possibly scattered particle positions. The conver-

gence properties of vortex methods with a finite core dictate that the particles must
overlap (i.e. h < e) at all times (Beale, 1986). However the local strain field of the

flow may distort the particle locations, thus producing particle clustering in one
direction accompanied by an expansion in another direction, similar to that which

would occur around a hyperbolic stagnation point in a steady flow. When such a

situation occurs the particle locations have to be re-initialized (remeshed) onto a

uniform grid while interpolating the old vorticity on the new particle locations. In

our algorithm we use a nine-point scheme to perform this remeshing, conserving

the circulation as weU as the linear and angular momentum of the vorticity field.
See Koumoutsakos (1993) for further discussion.
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IL_ A fractional step algorithm - boundary conditions

The no-slip boundary condition accounts for the generation of vortieity on the
surface of the body. The surface of the body acts as a source of vorticity (LighthiU,

1963), and the task is to relate this vortieity flux on the surface of the body to
the no-slip condition. This is achieved by appropriately coupling the kinematic and

dynamic constraints of the flow. The present methodology was first proposed by
Sehmall and Kinney (1974) and is implemented here in a fractional step algorithm.

In the present formulation Eq. 9 are not integrated simultaneously in time, but
instead a fractional step algorithm is employed. The governing equations are solved

via a splitting scheme that accommodates the enforcement of the boundary con-
ditions. For a non-zero thickness body the enforcement of the no-tangency flow

implies the enforcement of the no-through flow as well (Koumoutsakos, 1993). This
is not the ease, however, for the zero thickness flat plate, as one has to account

explicitly for the no-through flow boundary condition.
Let us assume that at the n-th time step (corresponding to time t - 6t) the

vorticity field has been computed (respecting the no-slip boundary condition) mad
we seek to advance the solution to the next time step (time t). The following

two-step procedure is implemented:

• Step 1: Using as initial conditions f(x) = wn(x ", n6t) we solve:

_ot + u. Vw = vV2w in Dx[t-6t,t] (10)
w(x,t-6t) = f(x) in _D

where D denotes the flow domain exterior to the body surface OD. Particles are

advanced via the Biot-Savart law, mad their strength is modified based on the

scheme of Particle Strength Exchange.

Algorithmically then Step 1 may be expressed as:

dx

d--_ = u"(x",n6t)
(11)

dw__i= vV2_2_
dt

At the end of Step I a vortieityfieldw_ has been establishedin the fluid.

• Step 2:
The boundary conditions are enforced in this stage by a vortieity (not particle)

creation algorithm.

_._,.I Simply connected domain - flat plate

Without loss of generality we assume that the plate surface lies along the x-axis

at y = 0 and between -L/2 < x <_ L/2. First, in order to enforce the no-through

flow boundary condition, a vortex sheet of strength _(_) is distributed on the plate

surface. The strength of this vortex sheet is then determined by the solution of the

following integral equation:

L/2 _(_) (12/
L/2 X-- _d_ = Un(X)
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where un(x) is the velocity normal to the surface of the plate. The above integral

equation is singular as it admits more than one solution. A unique solution is

obtained by enforcing the conservation of circulation (note that in airfoil theory

is uniquely determined by enforcing the Kutta condition)

L/2 / w(x)dx= -
J -L/2

(13)

Introducing the transformation 0 = cos-a(_) and using the orthogonality of a

Fourier series expansion for _(0), (Batchelor, 1967) over the interval [0, 7r], we obtain
that at each instant of time:

• cosO C

_(0) = -(a0 + 2sm_)s-_n _ + s-_n0 + 2 Z Amsin(mO)
m=l

(14)

where:

Am -- __2f0"u.(a)cos(m0)d0form = 0,1, ..., _ (15)

and C is determined by enforcing the conservation of circulation (Eq. 13):

2F

C _rL + A1 (16)

A finite number of terms (P) is retained in the infinite series Eq. 14 in the numerical

implementation of this method. Note also that the expression in Eq. 14 has built

in the singularity of the vortex sheet at the tips of the plate. The enforcement of

the no-through flow does not imply the enforcement of the no-slip condition for the

zero thickness flat plate. A tangential velocity ut(x) may be computed along the

plate surface due to the vortices in the wake. By taking the limit of Eq. 12 a vortex

sheet of strength 7 is observed on each side of the plate as:

"r(y=0-,x) = 1-fi (x) + u,(x)
(17)1

7(Y =0+, _) = +_(x) + u,(x)

In order to enforce the no-slip condition then, in the context of the present algo-

rithm we need to eliminate the spurious vortex sheet (x) and the tangential velocity

on the surface of the plate.

g.g.g Doubly connected domain - vortex generator,

For a doubly connected domain as that shown in Fig. lb, the potential flow

problem needs to be modified. For an open domain such as that exterior to the

cavity (in the absence of the flat plate), in order to enforce the no-through flow

boundary condition we require that the tangent flow on the interior surface of the

boundary vanishes. Unlike the case of a closed body, no additional constraint needs
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to be imposed for the solution of the respective integral equation (Koumoutsakos

and Leonard, 1989).
For the combined configuration the resulting integral equation is then:

[ // &L/2 dtl + "rw(¢) Logl¢-x, ld¢ = u.(xp) (laa)
J-L/2 Xp -- _ oo

,_(_, t)d_ = -v (lSb)
J-z/2 a-L�2 On(xp) dxpdT

/2 x(_) On__Logl¢__ld_ + /_17w(() on_LO9[___[d( = ut((,) (18c)
L/2

where tc(_),xp and 7,_(_), _ denote vortex sheets and location of points on the
surface of the plate and the cavity respectively.

The above set of equations, when discretized using a panel method, results in

a well posed system of equations which can be solved iteratively or by direct LU

decomposition (if storage is not a limiting factor).
The spurious vortex sheet (7) that is observed on the surface of the body may

then be translated to a vorticity flux (Koumoutsakos and Leonard (1994)).

Ow 7
v-_-_n(x) = g(x) on 07) (19)

The computed vorticity flux generates vorticity in the fluid. The vorticity field is

augmented by this viscous mechanism as described by the following set of equations:

0_ .v _ = 0 It _t,dOt in Dx -

w_(x,t- 6t) = 0 in

o_ -_(_) on or,
V

On 6t

(20)

Note that the diffusion equation is solved here with homogeneous initial conditions

as the initial vorticity field was taken into account in the previous substep. The

solution at Step 2 is a vorticity field w_, which we superimpose onto the solution of

Step 1 to obtain the vorticity distribution at the next time step

¢a._n+l t ' (21)_1 +032

3. Results

We have conducted a computational study of the unsteady flow behind a zero

thickness plate started impulsively or uniformly accelerated normal to the flow.
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FIGURE 2. Evolution of the recirculating bubble for Re = 20. -- : Present

computations, • ,× : Experiments (Coutanceau and Launay)for blockage ratios of

0.1 and 0.15 respectively. Theory (Steady State Results): ----- : Dennis and Qiang,

........ : Ingham and Tang.

For the impulsively started plate the present results complement related experi-

mental works while providing quantities such as the vorticity of the flow field and

the forces experienced by the body. The development of the flow is similar for all

the Reynolds numbers that were simulated (20 to 1000). The separating shear layer

rolls up into a vortex in the lee of the plate, inducing initially a region of secondary

vorticity. Diffusion acts to increase the width of the shear layer and reduce the

strength of the vortex resulting in a stable configuration. In Fig. 2 we present the

results of the present computations for the length of the recirculating bubble for

Re=20 and compare with existing experimental and theoretical works. The dis-

crepancies may be attributed to the different treatment of the boundary conditions

from the calculations of the steady state results and to the finite blockage ratio in

the experiments. A different behavior is observed for the separating shear layer

of a uniformly accelerated plate( U = a t). The continuous increase of the shear

flow overcomes the effects of diffusion, increasing the strength of the separating

shear layer and inducing a Kelvin-Helmholtz type instability. The wavelength and

the onset of this instability depends on the acceleration of the plate. The present

simulations are the first to confirm related experimental evidence on the forma-

tion of vortex centers along the separating shear layers of an accelerating flat plate

(Fig.3). Such undulations have been attributed to experimental defects, but the

present simulations suggest that this is an intrinsic behavior of the flow. Finally

the drag coefficient of the plate is shown to scale due to the similarity in the inviscid

development of the flow.

An extensive study of these flows for various Re numbers and acceleration rates

may be found in Koumoutsakos (1994).
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FIGURE 3. Flow past an accelerating flat plate. Top: Experimental results from

Lian and Huang (1989) for c_ = aLa/u 2 = 24.51 x 106 at T* = at2/L = 4.37.

Bottom: Computational results. Equivorticity Contours for a = 1.68 x 106 at

T* = 6.25.

4. Future plans

We are currently at the final stages of development of our code for the study

of flows involving the doubly connected configuration shown in Fig. lb. We are

interested in investigating the role of three dimensionality in the experiments and

determining the role of two-dimensional vortical structures. We will be investigating

possible control mechanisms with the long-range objective of developing feedback

control mechanisms.

Our final goal is full three-dimensional direct numerical simulations to comple-

ment the ongoing experimental investigations. We may use existing algorithms or

algorithms under development or proceed to extend the present computational tech-

nique to three-dimensional flows. In particular, research would be directed in the

development of fast solutions of integral equations in three dimensions (with pos-

sible multi-disciplinary applications) and the process of restoring the Lagrangian

computational grid. Of particular interest would be the coupling of the present

Lagrangian method with large-eddy simulation (LES) methodologies.
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Drag reduction strategies

By D. C. Hill

1. Motivation and objectives

In last year's Annual Research Briefs (Hill 1993) a description was given of an

active control scheme using wall transpiration that leads to a 15% reduction in sur-

face skin friction beneath a turbulent boundary layer, according to direct numerical
simulation. In this research brief further details of that scheme and its variants

are given together with some suggestions as to how sensor/actuator arrays could

be configured to reduce surface drag. The research which is summarized here was

performed during the first half of 1994.
This research is motivated by the need to understand better how the dynamics

of near-wall turbulent flow can be modified so that skin friction is reduced. The

reduction of turbulent skin friction is highly desirable in many engineering appli-

cations. Experiments and direct numerical simulations have led to an increased

understanding of the cycle of turbulence production and transport in the boundary

layer (Robinson 1991) and raised awareness of the possibility of disrupting the pro-

cess with a subsequent reduction in turbulent skin friction (Bushnell & McGinley

1989, Blackwelder 1989). The implementation of active feedback control in a com-

putational setting is a viable approach for the investigation of the modifications to

the flow physics that can be achieved (Choi et al. 1994).

Bewley et al. (1993) and Hill (1993) describe how ideas from optimal control
theory are employed to give "sub-optimal" drag reduction schemes. The objectives

of the work reported here is to investigate in greater detail the assumptions implicit
within such schemes and their limitations. It is also our objective to describe how

an array of sensors and actuators could be arranged and interconnected to form a
"smart" surface which has low skin friction.

2. Accomplishments

As before, the various schemes are aimed at reducing the mean drag upon a plane

wall by the application of distributed or localized blowing and suction. There is no

net mass flux through the wall, and an expense is associated with the control action.

The simulations are performed for a channel flow with a constant mass flux through
the channel. The Reynolds number based on friction velocity is of the order 100 for
the tests.

2.1 A_umption8

The sub-optimal drag reduction scheme of Hill (1993) is based upon minimizing

the drag by considering how the flow is most favorably influenced during consecutive
short time intervals. In order to arrive at the relatively simple control law, several

assumptions must be made about the flow field.
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Only flow structures in a layer close to the wall are significant in deciding how

control will modify the flow evolution. The characteristic thickness of this layer of

influence is

Lr = g wall units, (1)

where T is the control time interval in wall units over which the local optimization
is made. The layer of fluid between the wall and y+ = LT will be referred to as

the layer of influence. The dynamics of the flow within this layer guides the control
force distribution.

One concern about the original derivation of the result reported last year was

the assumption that there is no mean shear at the wall. The flow was taken to be
uniform, and the effects of mean shear were assumed to be negligible. Following a

considerable analytical effort, that assumption has been shown to be valid. A re-
derivation of the scheme with mean shear effects included leads to the same result

as that presented by Hill (1993).

Other assumptions made during the derivation have been clarified:

1. Events far from the surface are not modified significantly by the effect of the
surface control velocities.

2. On the control time interval, mixing within the layer of influence is sufficiently

weak that it plays a negligible role in the transport of control signals. There is

an unsteady component in the near-wall flow field. The effect of unsteadiness in

transporting the control signals has been neglected. Note that this does not mean

that unsteadiness has been neglected.

3. Those flow structures which govern the sensitivity of the immediate drag to

changes in the control distribution do not evolve significantly on the control time
interval.

4. The layer of influence is sufficiently thin that the mean and unsteady flow

components within the layer are represented well by a low order Taylor expansion
at the wall. It is assumed that the differential scale in the wall-normal direction of

the velocity fluctuations is much larger than the thickness of the layer of influence.

It is important to recognize that the present control theory deals only with effi-

cient changes to the behavior of the viscous sub-layer region. The physics of the

sweep events and turbulence production involves events further from the wall which

have a much longer time scale than that of the optimization. Consequently, these
flow characteristics are not necessarily modified in an optimal mariner. They are

influenced indirectly by the modifications which are applied in the viscous sub-layer.

e.e Variants of the original scheme

Using the sensitivity function, two classes of scheme have been devised and tested
by direct numerical simulation. The wall-normal velocity component at the nth

time step is represented by its Fourier transform, _(n)(a,fl), where o_ and fl are
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streamwise and spanwise wave numbers (7 = _ + f12). The Fourier transform of
the streamwise velocity fluctuations is denoted by fi(")(a, #; y).

1. In the spirit of Choi et al. (1994), we considered the scheme

#) = #; Lr) (2)
(t '°- _-_(1 -

This scheme uses information within the flow domain at y+ = LT. With t = 1

and LT = 10, a drag reduction of 19% is achieved. The similar scheme of Choiet

aI., which applies wall transpiration equal and opposite to the wall-normal velocity

component at y+ = 10, gives a reduction of about 23%.

2. The following relaxation scheme has been tried:

1 {_(")(a,/_)-I- #LT (Ofi(")_= 1+  rl- LT)) (3)
2-_',

where p is a relaxation parameter. This scheme uses wall information only and
leads to a drag reduction of about 14% (# = 0.05, _ = 1, LT = 5).

2.3 Implications for sensor and actuator arrays

In practice an active drag reduction system is likely to consist of an array of wall-
mounted sensors and actuators. For the present scheme, the sensors must measure

the streamwise component of wall shear, while the "actuators" are orifices through

which fluid is injected and removed. The control velocity at a particular actuator

is updated on the basis of information from the sensors in its neighborhood. The
prior control velocities at neighboring actuators are also required.

Consider a rectangular array of locations on the wall at which the control velocity

is specified. Variable _I,'_) denotes the control velocity at the ith streamwise and
jth spanwise position. Let ha, and h_ be the streamwise and spanwise spacing,

respectively, between actuators. Suppose that the unsteady component of wall shear

in the streamwise direction, -(") is measured at a similar array of sensor positions,ai,j ,
which is offset from the actuator array. Let h_ and h_ be the streamwise and

spanwise spacing of the sensors. In order to define the control update at the (i, j)th
actuator, data from a number of neighboring actuators and sensors is employed.

Let there be N_ streamwise and N_ spanwise actuators and N_ streamwise and N_

spanwise sensors.

The following scheme is proposed:

N: N: N_* N.*

(.+1)
q_i,j _ _ T_Ta &(n) ,,rs (n)""k,'_i+k,j+'+ #LT _ _, (4): Wi,lffi+k,j+i •

k=l i=1 k=l I=1

The weights are

a Z aW_,, = c(k, N2)c(l, N2) h_h_ K(-x_3,- k,l),

s Z aW_, I = c(k,N_)c(l,g_) h_h_ K(-x_3,- k,l),

c(k, N) = 1/2, if k = 1, N,

= 1 otherwise , (5)
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where (xk,t, z a sa k,t) and (xk,t, zk,t) are the locations of the actuators and sensors, re-
spectively, measured relative to the location of the actuator for which the control

velocity is being computed.

The function K(x, z) is defined by

_ 1 f-_'°/-_°oo . I_--_-ci('_+_z) 7LT)))d_da"It'(x,z) - _ _o (l+/_t. -_ -
(6)

The wave number cutoffs a0 and fl0 are introduced since the derivation for the

analytical control law is not defined as a and _ become very large. Preliminary

experience suggests that the application of this cutoff does not have a detrimental

effect.

It has been found that only a few neighboring points offer a significant contribu-

tion to the summation; the weight factors Wia,js diminish rapidly in magnitude as
lil and IJ[ are increased. This is very encouraging since it suggests that a control

stencil that employs information from nearby sensors and actuators alone may be

quite effective. Experience with the spectral version of the control scheme suggests

that the streamwise spacing between actuators/sensors should not exceed 12 wall

units if the scheme is to be effective. The spanwise spacing should not exceed 4 wall
units.

Once more the author is indebted to T. Bewley for his time, patience, and effort

in the implementation of these rules in the direct numerical simulations.
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Optimal active control for Burgers equation

By Yutaka Ikeda 1

A method for active fluid flow control based on control theory is discussed. Dy-

namic programming and fixed point successive approximations are used to accom-

modate the nonlinear control problem. The long-term goal of this project is to
establish an effective method applicable to complex flows such as turbulence and

jets. However, in this report, the method is applied to stochastic Burgers equation
as an intermediate step towards this goal. Numerical results are compared with

those obtained by gradient search methods.

1. Motivation and objectives

There is current research at Stanford to develop active feedback control schemes

based on optimal control theory to control turbulence. In particular, an optimal

control method based on a gradient search algorithm is discussed in Choi, Teman

and Moin (1993) and Bewley and Moin (1994). Such gradient schemes, however,

are not guaranteed to converge to the global minimum of the cost functional and
thus may suffer from degraded performance when compared with the "optimal" in

a given situation.
The objective of the current research is to investigate an alternative method to

the gradient search method without increasing computational complexity. The ap-

proach we take is to impose the convexity onto the cost functional and derive the

analytical optimal controlled solutions for a set of linearized systems. This elimi-
nates the minimization process of the cost functional. Then the optimal controlled
solution for stochastic Burgers equation is found by Fixed Point Theorem. The

resulting method is compared with the gradient method through numerical simula-
tion, then assessments for applicability to more complex flow dynamics are made.

2. Scheme for optimal control

_.1 System model

We consider stochastic Burgers equation as a system model:

Ou 1 02u 0 u 2

Ot Re Ox _ Ox 2
+ F + X. (1)

Initial condition and boundary conditions are given by u(x,to) = u0(x), x E (0, 1)

and _(0, 5) = _(1, 5) = 0, t e [s0,T]. Also,n_, F(=,5), and X(x,5)denote Reynolds
number, a forcing term, and a normally distributed random forcing term with zero

mean and unit variance, respectively.

1 McDonnell Douglas Aerospace
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In order to control the velocity gradient v = Ou/Ox, we introduce the dynamics

of the velocity gradient, which can be formally obtained by differentiating Burgers
equation with respect to z such that

Ov 1 cg_v Ov

0t - n¢0x2 u_-u,v+f+f (2)

where f(x,t) = cOF(x,t)/Ox denotes the control forcing term for the differential

form of Burgers equation and _ = OX(x, t)/Ox, a formally differentiated random
forcing term.

2.2 Cost functional

We consider a control problem in which the cost functional to be minimized is
given by

T 1

J= Ox + Id(f(x, 0) 2)dxdt], (3)
to 0

where El.] denotes a mathematical expectation. In a more general setting, the state,
control, and the cost functional can be formed by

(;)au , U =

and

where

T 1

J= 1E[//(md(XTQX) + Id(UTRU))dxdt], (4)
to 0

(_)1 0) and R=(_ 0)Q = q2 r2 "

If we select ql small relative to q2 and r2 small relative to rl, we can formulate a

problem similar to that discussed in Choi et al. (1993). However, this introduces a

higher dimension of the system dynamics. For computational simplicity, control of

the decoupled (l-D) system rather than the augmented (2-D) system is considered
by selecting ql = rl = 0, which results in (3).

_.3 Optimal control strategy

A brief summary of the optimal control strategy is now given:

* Linearize system: Consider the system given by the linear equation

Ov 1 02v Ov

& - R_ 0_ Uo,,o---d - (Uo,,,),v + y + ¢, (5)

where Uopt denotes the solution of Burgers equation (1) when the optimal control
font is applied to the system (2).
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* Design a linear optimal controller:. The dynamic programming technique is ap-

plied to the linear distributed parameter system (5) to find the optimal control
for the linear system (for detail, see Tzafesta.s and Nightingale 1968).

* Compute optimal controlled solution Uopt: Once the optimal controller for (5) is

found, integrate Eq. (5) with respect to x to yield:

Ou 1 O2u Ou
Ot - Re Oz 2 - u°P'-_x + F + X. (6)

To solve (6) for the optimal controlled solution, we need to know the optimal
solution before it is solved. Hence, for the moment, we replace uopt in (5) and (6)

by a known function w(x, t) and consider a mapping G(w) defined on a function
space which maps w(x, t) to the solution u(x, t) of (6). Notice that for each w the

optimal controller is designed for the linearized system, and thus each image u of

G(w) forms an optimal solution for the corresponding system. Now, consider a

family of optimal controlled solutions generated by G(w). Then it is clear that the

fixed point of G(w) (if it exists) is the optimal controlled solution Uopt of Burgers

equation (6). To find the fixed point of G(w), a method of successive approximations

is employed.

3. Numerical simulation

An early evaluation of this new optimal control formulation is important for

determining the promise of the approach. To accomplish this, an evaluation through

comparison is performed between the current method and the gradient method

investigated by Choi el al. A numerical example was taken from Choi el al. (1993)

for a comparison study (distributed control problem, case(ii), where the weights
la = 1 and md= 1/dx in the cost functional, Re = 1500 and dx = 2047). However,

only qualitative comparison is meaningful in the current comparison study since the

control problem is set up differently from the gradient method by Choi el al. in
order to keep the computational complexity low. That is, the current method uses

the cost functional (3) as one of the simplest cases of the more general form (4)

(see discussion in 2.2), while the gradient method by Choi el al. uses the integrated
control F instead of f in the cost functional (3). Another difference is that the cost

functional in Choiet al. (1993) is formulated without the integral sign with respect

to time; hence, the cost is minimized at each instance of time rather than over a
duration of time.

Two different values for the ratio la/md were considered. Case-l: the weights ld

and md were set to be identical with those in the example. Case-2: the weight ld

was reduced by a factor of 1000 to allow more control power, keeping the weight

rnd the same. In each case, the time histories of the cost functional, control power

used, and gradient at the wall (x = 0) were computed. The results are shown in

Figs. 1-3. The velocities at time 2 second are shown in Fig. 4. The corresponding

figures from Choi el al. (1993) are also shown in Figs. 1, 2, and 4 for comparison.
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FIGURE 1. Time history of the cost functional. Legend: _, without forcing;
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(case 1); -- -- --, with control and random forcing (case 2); m m, with control
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Fig. i shows that both methods reduced the cost functional significantly.The

integrated control power F in each case of the current method and the gradient

method are shown in Fig. 2. It shows that the amount of control F used in Case-

I is much less than that in Case-2 and the gradient method. Therefore, Case-2

seems more comparable to the example with the gradient method with respect to

the momentum forcing added to Burgers equation. This seems natural since the

velocity gradient becomes large in magnitude, particularlywhen the random noise

is present. Hence, it requires more control power f when the velocity gradient is

fed back than when the velocity isfed back. Fig. 3 shows that the current method

controls the velocity gradient effectivelyifenough control power isallowed. Both

Case-1 and the gradient method needed more control power to reduce the gradient

at the wall significantly.From Fig. 4 itcan be seen that the current method reduced

the velocity magnitude as well as the velocity gradient while the gradient method

did not reduce the velocity magnitude as much. This may be explained as follows:

the current method seems to controlthe velocitygradient by regulating the gradient

magnitude uniformly. Then, since the velocityat the boundaries are fixedto be zero,

the velocity magnitude becomes small. On the other hand, the gradient method

seems to control the velocity gradient by linearlyscaling down. Hence, itreduces

the absolute magnitude of the higher velocity gradient more significantly.One final

observation isthat the control formulated by the current method seems to respond

more than a one order of magnitude fasterthan that by the gradient method (see

Case-2 in Fig. i, and Fig. 7(b) in Choiet al. 1993). This is a very important

advantage for non-stationary applications.
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FIGURE 4. Velocity at t = 2. Legend: --, with random forcing and no control;

, with random forcing and control (case 1); -----, with random forcing and

control (case 2); -- -- --, with random forcing and control (Choiet. al.).

4. Conclusions

A method for active control of fluid flow dynamics was discussed. The simulation

results show that the current control method works effectively and seems to be

extendable to Navier-Stokes equations without major problems. Applications to

turbulence and/or jet control will be attempted in the near future.
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Acoustics of laminar boundary layer breakdown

By Meng Wang

1. Motivation and objectives

Boundary layer flow transition has long been suggested as a potential noise source

in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) ap-

plications, owing to the highly transient nature of the process (Farabee et al. 1989).

The design of effective noise control strategies relies upon a clear understanding of

the source mechanisms associated with the unsteady flow dynamics during tran-

sition. Due to formidable mathematical difficulties, theoretical predictions either

are limited to early linear and weakly nonlinear stages of transition (Haj-Hariri

Akylas 1986; Akylas _ Toplosky 1986), or employ acoustic analogy theories based

on approximate source field data, often in the form of empirical correlation.

In the present work, an approach which combines direct numerical simulation

of the source field with the Lighthill acoustic analogy (Lighthill 1952) is utilized.

This approach takes advantage of the recent advancement in computational capa-
bilities to obtain detailed information about the flow-induced acoustic sources. The

transitional boundary layer flow is computed by solving the incompressible Navier-

Stokes equations without model assumptions, thus allowing a direct evaluation of

the pseudosound as well as source functions, including the Lighthill stress tensor

and the wall shear stress. The latter are used for calculating the radiated pressure

field based on the Curle-Powell solution (Curle 1955; Powell 1960) of the Lighthill

equation. This procedure allows a quantitative assessment of noise source mecha-

nisms and the associated radiation characteristics during transition from primary

instability up to the laminar breakdown stage. In particular, one is interested in

comparing the roles played by the fluctuating volume Reynolds stresses and the

wall-shear-stresses, and in identifying specific flow processes and structures that are

effective noise generators.

Natural transition in a boundary layer starts with modulated Tollmien-Schlichting

(T-S) wave trains initiated by random excitations from free-stream turbulence

(Gaster 1993). The laminar breakdown process which destroys the smooth, orderly

flow pattern is a localized event triggered by instability mechanisms (Kachanov

1994). These observations suggest that without loss of generality, one could sim-

ulate the transition phenomena by following the evolution of a T-S wave packet

instead of a periodic wave series as in controlled experiments. This results in con-

siderable savings in computer memory and CPU time due to the reduced domain

size. Furthermore, the amplitude modulation allows the wave packet to evolve spon-

taneously into a turbulent spot, which cannot be achieved if the initial instability

wave is strictly periodic (Kachanov 1994). From an acoustic viewpoint, tracking

an isolated wave packet has the advantage that the linkage between the calculated

sound signal and the specific transition stage is apparent. Once the sound gener-

ation properties from a single breakdown (burst) are determined, one could make
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statistical inferences regarding the sound of a realistic transitional boundary layer

where a large collection of spots are present.

This report summarizes work accomplished to date and the major findings. A

longer and more complete version is available as a CTR manuscript (Wang et al.

1994).

2. Accomplishments

2.1. Numerical simulation of wave packet transition

The specific problem considered involves a strongly modulated T-S wave packet

in a low Mach number, zero pressure gradient boundary layer formed on a rigid,

flat plate. In the spirit of Lighthill's theory, the acoustic source functions can be

approximated by considering an equivalent incompressible flow since the compress-

ibility effect is negligibly weak. The incompressible Navier-Stokes and continuity

equations are solved numerically on a staggered grid using a finite difference scheme

developed by Le and Moin (1991). The grid spacing is uniform in the streamwise

(xl) and spanwise (z3) directions, and non-uniform in the wall-normal direction

(x2). Time advancement is of semi-implicit, three-step Runge-Kutta type com-

bined with a fractional step method. The Poisson equation is solved at the final

sub-step to satisfy the divergence-free constraint. The numerical scheme is second

order accurate in both space and time.

The domain of integration consists of a rectangular box parallel to the flow di-

rection. A no-slip condition is applied on the wall. At the free-stream boundary

a normal velocity distribution based on the Blasius solution and zero vorticity are

prescribed. In the spanwise direction periodicity is assumed for all dependent vari-

ables. A convective boundary condition capable of maintaining the accurate steady

(Blasius) velocity profiles (Wang et al. 1994) is used at the downstream boundary.

The unsteady wave packet is introduced into the computational domain from the

upstream boundary by requiring that

ui( x, = O) = u_ (x2 ) + Real ( e 2D u2D(x 2 )e-'_'

le3Du3D+/x .lei[((_sin 0)zs-/_t]

1 3D..3D-/_ __i[--(a sin _b)za--_t] ] _- ( t-_rt _ 4

+ - - (1)

B
where u i (x2) re_resents the Blasius solution for a two-dimensional boundary layer.

2D 3D:J=
u i (x2) and u i (x2) are the least stable eigenmodes and a is the corresponding

eigenvalue, obtained by solving the Orr-Sommerfeld and Squire equations for given

frequency fl = 0.094 and oblique angle ¢ = 7r/4. The eigenfunctions are normalized

such that the maximum streamwise velocity has unit magnitude. The disturbance

amplitudes are e2D = 0.025 and e3D = 0.01. The streamwise shape of the wave

packet is determined by r = 40 and to = 120 in the time-modulating envelope.

In addition, symmetry relative to the spanwise center x3 = 0 is destroyed by the
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function g(x3) 1 + O.l(e-(_)" _,,+L,.,,= - e-t £-"r"_-) ). As pointed out by Corral gz

Jim_nez (1991), spanwise asymmetry accelerates the transition process and renders

the simulation more manageable. The Reynolds number defined in terms of 6_ is

Re = 1000, which is equivalent to Re_ ,_ 3.38 × 105 as measured in terms of distance

from the leading edge.

In (1) and the subsequent descriptions, the velocities, spatial coordinates, and

time are non-dimensionalized with respect to the free-stream velocity U_, the in-

flow boundary layer displacement thickness 60, and 60/U_o, respectively. The ther-

modynamic variables are non-dimensionalized relative to their constant free-stream
values.

Computations start out on a 514 x 130 × 66 grid covering a computational domain

defined in 0 < xl _< 200, 0 < x2 < 20 and -Ax./2 _< x3 < A_s/2, where Ax. _ 25.95

is the spanwise wavelength for the oblique eigenmode pair. As simulation proceeds,

resolution requirement becomes increasingly severe within the traveling disturbance

region, whereas near the upstream boundary the flow becomes basically steady.

Grid refinement is performed twice in conjunction with shifts in computational

boundaries following the movement of the wave packet. A cubic-spline interpolation

scheme is used to interpolate solutions onto new grids. By the end of the simulation,

the computational grid consists of 1282 × 130 × 258 points covering a shortened region

70 < xl < 210. The entire simulation utilizes approximately 60 single processor

CPU hours on CRAY-YMP-C90.

Figs. la-f depict a time sequence of the instantaneous contours of the negative

spanwise vorticity -w_,, which is closely related to the normal shear Oul/Ox_,

at x3 _ 1.1. Solid lines denote positive contour values, and dashed lines denote

negative ones. The plane x3 _ 1.1, which lies slightly off the spanwise center,

is chosen because it corresponds to the approximate location of maximum shear.

Notice that due to the slight asymmetry of the initial T-S wave packet, the peak-

valley splitting along the spanwise direction during the secondary instability is not

as clear-cut as for symmetric disturbances. Nonetheless, the transition is seen to

follow closely the route that leads to fundamental (K-type) breakdown.

The complete wave packet enters the upstream boundary xl = 0 at t _. 185.

Through the action of primary and secondary instability mechanisms, it amplifies

rapidly, evolving into a detached high shear layer as shown in Fig. la. Underneath

the shear layer lie a pair of counter-rotating streamwise vortices (lambda vortex)

whose structure will be shown later. The high shear layer intensifies to create a

kink in Fig. lb, which breaks down in Fig. lc to form an eddy (presumably hairpin

eddy) while a second kink develops. In Figs. ld-lf the detached high shear layer

continues to disintegrate, shedding eddies into the free stream. In the meantime,

vortical activity intensifies in the near wall region, and a new generation of shear

layers originates there. The new shear layers are expected to experience similar

breakdown processes, known as turbulent "bursts". The flow field depicted in Fig. If

already bears certain resemblance to turbulence. However, large scale high shear

layers and streamwise vortices still dominate the overall flow structure, particularly

in the rear part of the wave packet and away from the spanwise center.
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FIGURE 1. Contours of negative spanwise vorticity -wz8 at x3 _ 1.1 during

laminar breakdown. Contour values: (a) 0 to 0.94, (b) -0.23 to 1.81, (c) -0.59 to

1.61, (d) -1.30 to 2.13, (e) -1.52 to 3.22, (f) -0.98 to 3.83.
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FIGURE 2. Evolution of disturbance kinetic energy integrated over the x2-xa

plane during laminar breakdown.

Figs. 2a-f illustrate the streamwise distribution of the disturbance kinetic energy
integrated over the x2-x3 plane, at time instants corresponding to those in Figs. la-f.

The energy is calculated based on the excess velocities relative to the steady solution.

The snapshots show the nonlinear distortion of the energy waveform which leads to
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FIGURE 3. Contours of instantaneous normal velocity at x2 _ 1.1. (a) t = 339,

contour spacing = 0.015; (b) t = 409, contour spacing = 0.02.

the formation of one, two, and multiple spikes, each corresponding to an eddy. These

spikes are observed in experiments for the K-regime breakdown (Kachanov 1994)

as high frequency flashes of disturbances on the streamwise-velocity oscilloscope

traces. Kachanov notes that the velocity flashes do not disperse while they prop-

agate downstream near the edge of the boundary layer, a feature identifiable with

solitons. It is conceivable that the kinetic energy waveforms exhibited in Figs. 2a-f

may be modeled by certain evolutionary equations within the framework of soliton

theory. The spread of the nonlinear wave packet in the streamwise direction during

laminar breakdown is apparent in Figs. 2a-f. The amplitude increase observed in

the energy waveform reflects not only the growth in disturbance velocities, but also

the spread of the wave packet in the spanwise direction.

In Figs. 3a-b the normal velocity contours in the plane x2 ,_ 1.1 are plotted for

two time instants before and after laminar breakdown. Fig. 3a shows the two legs

of the lambda vortex which merge gradually along the streamwise direction. The

lambda vortex is "crippled" in the sense that it has unequal strength in the two

legs, caused by the spanwise asymmetry prescribed in the initial disturbance. The
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imbalance causes the two legs to become twisted near the tip of the vortex loop,

accelerating the breakdown of the streamwise vortex structure and the high shear

layer supported by it. This effect can be seen more clearly if one plots streamwise

vorticity contours at certain x2-x3 cross-sections. Similar obser_-ation has been

made by Corral gz Jim_nez (1991). By the time depicted in Fig. 3b, the front portion

of the primary lambda vortex has disintegrated, and regions of smaller streamwise

vortices emerge. The disturbance region has been elongated since the turbulence-

like small-scale structures travel at a faster speed than the lambda vortex. At the

rear the larabda vortex legs are still recognizable. Fig. 3b also demonstrates that up

to this stage, the disturbance region remains small in the spanwise direction relative

to the width of the computational box. Interaction between the neighboring patches

is negligible despite the periodicity imposed in the spanwise direction. Thus, the

wave packet can be justifiably considered isolated.

The transition scenario described in this section is in qualitative agreement with

experimental observations (Gaster 1993; Borodulin _: Kachanov 1992). In particu-

lar, the coherent structures depicted in Figs. le and If are remarkably similar to the

experimental measurements illustrated in Fig. 31 of Kachanov (1994). Quantitative

comparisons are difficult because of disparity in parametric conditions. The results

of the present simulation are also in keeping with those of earlier numerical studies

(Zang & Hussaini 1990; Kleiser &: Zang 1991, for example). The latter are based

on a temporal formulation (assuming streamwise periodicity) and do not exceed

the two-spike stage. The observed similarity between the two types of simulations

confirms that as first suggested by Kachanov (1994), the laminar breakdown of a

modulated wave packet proceeds in nearly the same way as that for a periodic T-S

wave series. This illustrates the localized nature of resonant mechanisms that lead
to laminar breakdown.

2.2. Computation of acoustic radiation

Acoustic computation based on Lighthill's theory is particularly simplified for a

compact flow region. In this case the small retarded time effect can be approximated

in the sense of multipole source expansions. Based on the integral results of Curie

(1955) and Powell (1960), the far-field acoustic pressure can be shown to have the

following asymptotic property as M --* 0; I-_1 --* co:

471" _ Xt_ .

-T[p(X,t ) - 1] _ 2M 4 _-_Ro(t- [)(I)

+ M5 X_Xj + X;X_ ..
iXl

IXl
(2)

where M is the free-stream Mach number and )_ = M_ is the rescaled far-field posi-

tion vector, whose image in the rigid wall X2 = 0 is )_* = (X1,-X2, Xa). Repeated
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indices i and j represent summation over 1 to 3, whereas a and fl are summed over

1 and 3 only. The three terms on the right side of (2) represent contributions from,
respectively, net surface dipoles due to fluctuating wall shear stresses, net volume

quadrupoles (including wall reflection) dominated by fluctuating Reynolds stresses,

and net surface quadrupoles due to finite spatial distribution of wall shear stresses.

The dipole and quadrupole source strengths are determined by

°/att,,(t) = N t)aA(¢), (3)
0

(_ij(t) = _ Tij(!_, t)dV(y-*), (4)

O faS_(t) = _ y_v_2(f,t)dA(f), (5)
0

where the Lighthill stress tensor and the viscous stress tensor take the approximate
values

1 (0u, 0u, 
u u,, ru \Oxi + ]' (6)

given the small Mach number assumption. The volume integrations are taken over

the entire unsteady flow region, and the surface integrals are evaluated on the wall.

A serious difficulty confronts computational acousticians when vortical structures
enter or pass out of the computational domain, causing powerful dipole radiation

which may mask the true physical sound (Crighton 1993; Wang 1993). This arises
because, if the complete disturbance region is not included in the finite computa-

tional domain, the time variations of the volume (surface) integrated Qij, R_, and
Sa_ (cf. (3)-(5)) tend to be dominated by the fluxes of their respective integrand

across the integration boundaries rather than by the internal generation of these
quantities within the control volume.

Steps have been taken in order to eliminate the non-physical boundary effects.
First, the computational boundaries for Navier-Stokes simulation of the source field

are maintained sufficiently far away from the region of significant disturbances, as

is evident from a comparison of the computational box size (140 x 20 x 25.95) with

the size of flow structures displayed in Figs. 1-3 (note that only part of the domain

is plotted to magnify the main feature). This measure alone removes most of the

boundary artifacts at the expense of increased computational cost. However, it is

impossible to prevent small disturbances from reaching the downstream boundary
even if a very long computational domain is used. The difficulty is illustrated in

Fig. 4, which depicts contours of the instantaneous normal vorticity at x2 _, 2.3,

t = 292. The primary structure at left is identified with the wave packet. The

transient ripples induced by the wave packet extend all the way to the right because
they axe convected near the edge of the boundary layer at a faster speed.

The residual boundary artifacts caused by these ripples are removed by using the

corrected quadrupole sources defined as

O Is u_TijdS, (7)
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FIGURE 4. Contours of instantaneous normal vorticity at x2 _ 2.3, t = 292.

Contour spacing = 0.0015.

where F_j represents the flux of Lighthill stress components at the outflow boundary.

Eq. (7) is derived based on a control-volume balance for Tij, recognizing that the

physical sound sources are associated only with the Lighthill stresses (predominantly

Reynolds stresses) generated internally through nonlinear interactions. Eq. (7) is

exact except for the evaluation of the surface flux Fij, which assumes that Tij is

convected passively out of the outflow boundary at the local mean velocity. The

approximation works well for the present problem, as demonstrated below, because

the ripple disturbances are linear and travel at approximately the free-stream ve-

locity. In general, however, the Tij associated with large vortical structures involves

nonlinear effects and travels at a phase velocity which is not known a priori. More

accurate methods for estimating Fij need to be developed, perhaps along the line

of Fedorchenko (1986).

Fig. 5 illustrates the effect of flux correction for 812, the component with the

largest boundary artifact. The dashed and dotted lines, representing the original

quadrupole source and the time-derivative of the outflow boundary flux, respec-

tively, show oscillations of similar magnitude but opposite phase for t < 330. As a

result the corrected acoustic source (the solid line) remains nearly zero during this

period. Had the spurious boundary contribution not been subtracted, one would

predict incorrectly sound radiation when the wave packet transition is still in an

early stage (cf. Figs. la-f). At later times, Fig. 5 shows that the boundary flux

contribution continues to be significant although the physical source gradually be-

comes dominant. The vertical dotted line in the figure indicates the time when the

computational domain is moved from 0 < xl __ 200 to 40 < xl __ 180. This causes a

discontinuity in 812 and F12, but Q_2 remains continuous since the physical source

is completely contained within both domains.

In what follows the prime in Q_j is dropped to simplify notation, with the un-

derstanding that the quadrupole sources presented are free of boundary artifacts.

Convergence of the quadrupole and dipole source terms is monitored by evaluating
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them in two domains of integration whose downstream boundaries are a short dis-

tance (,,_ 5) apart. Agreement between the two solutions indicates that no boundary

effect is present. When the two solutions start to deviate, the computational box is

moved to a new downstream location.

2.3. Results and discussion

Figs. 6 illustrate the time-variations of the volume quadrupole source terms Qij

calculated from (4) with appropriate boundary flux corrections. The upper figure

depicts the three longitudinal components, and the lower figure depicts the lateral

ones. Since the Lighthill stress tensor is symmetric, only six components are needed

to define (_ij completely. The characteristics of source oscillations should be ana-

lyzed in conjunction with the flow structures shown in Figs. la-f. The quadrupole

source signals generated by wave packet evolution are relatively weak initially, and

then amplify dramatically as the shear layer begins to breaks down. Thereafter, the

Qij curves are seen to develop oscillations dominated by frequencies 5 to 7 times

the basic T-S wave frequency (T-S wave period _ 66.5).

A close examination of the Qzz curve and Figs. 1-2 indicates a strong correlation

between source oscillation and vortex-shedding in the boundary layer. At t =

409, the number of spikes (eddies) shown in Figs. 2a-f is approximately equal to

the number of cycles experienced by QH. Thus it appears that the dominant

mechanism for generating quadrupole sound is the intermittent vortex shedding,

or bursting, resulting from strong inflexional instability of the high shear layer.

This is not unexpected since turbulent stress production oeeurs mainly during the

bursts (Landahl 1975). In his experiments concerning instability of modulated T-

S wave trains, Gaster (1993) observes a characteristic bursting frequency of 5 to

6 times the T-S wave frequency, coinciding with the dominant source frequencies
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calculated in the present study. Gaster further notes that the bursting frequency

is independent of the Reynolds number. The agreement between the bursting and

acoustic source frequencies supports the assertion that the large-scale shear layer

instability is primarily responsible for the calculated quadrupole sound.

It is interesting to notice that no significant increase in higher frequency contents

is observed in Figs. 6a-b as transition proceeds to create increasingly refined scales.

Likewise, the amplitudes for Qij remain basically invariant with time, even though

the total kinetic energy of the source region (the area under each curve in Figs. 2a-f)
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stress during local laminar breakdown. -- R1; .... Rs.

grows at an exponential rate. These observations can be explained in terms of the

localized nature of bursting which dominates the instantaneous sound production.

The small-scale features and the convected large eddies produced during previous

bursts are less efficient as quadrupole acoustic sources, although they contain large

amount of disturbance energy.

In Fig. 7 the two net acoustic dipoles caused by fluctuations of wall shear stress

exerted on the fluid are plotted. They are dominated by low (T-S wave) frequency,

small amplitude phenomena during the process of shear layer lift-up and the first

three bursts. Figs. la-f show clearly that within this period, the near-wall region is

little affected by the violent events outside. As the laminar wave packet approaches

the turbulent spot stage, the near-wall shear intensifies, giving rise to a surge in

higher frequency dipole strength. The magnitudes of R3 in Fig. 7, as well as Q13 and

Q23 in Figs. 6a-b, reflect the extent of spanwise asymmetry during flow development.

They would vanish if symmetry conditions were imposed for the simulation.

The surface quadrupole acoustic sources given by (5) are caused by the chang-

ing spatial distribution of wall shear stress. They represent an O(M) correction

to the wall-stress induced dipole radiation in the compact source limit. Like the

dipole source terms, the surface quadrupole components are small until the inner

boundary layer is excited at a late laminar breakdown stage as illustrated in Fig. 8.

The segments of SaZ plotted have magnitudes comparable with those of the vol-

ume quadrupoles depicted in Figs. 6a-b, but at higher frequency. Before t = 390,

however, contribution from Sij is insignificant.

Figs. 6-8 demonstrate that the acoustic emission level is very low at early stages of

wave packet transition. At the earliest instant plotted (t = 300), the wave packet has

already evolved into a lambda vortex-high shear layer structure. Prior to that, the

acoustic source terms exhibit either monotonic growth or extremely low amplitude
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oscillations at the basic T-S wave frequency. Thus it can be concluded that linear

and weakly nonlinear amplification of the T-S wave packet produces insignificant

sound relative to the more violent bursting process later. Unfortunately, only the

former regime is amenable to rigorous analytical treatment (e.g., Ffowcs-Williams

1967; Akylas & Toplosky 1986; Haj-Hariri & Akylas 1986).

For flow-noise problems it is generally recognized that the energy-containing co-

herent structure provides the predominant noise source. The fine-scale structure

associated with high frequency phenomenon is largely irrelevant (Crighton 1975), a

conclusion supported by the lack of relatively high frequency components in Figs. 6-

8. To test the sensitivity of quadrupole sources to the size of flow structure, the

computed flow field is filtered in the Xl-Xa plane using a box filter of varying width

before the volume integration in (4) is performed. The results for Ai = 2Axi, 4Axi,

and 8Axi, where Ai is the filter width in the ith direction and Axi is the mesh

spacing, are compared in Fig. 9 with those without filtering. For brevity only the

three longitudinal components are given; the three lateral ones behave in the same

way. Clearly, the basic source characteristics are preserved after filtering the flow

field with a filter of widths up to 4Ai (2&i for 822). With a filter width of 8Ai,

the results are still in qualitative agreement with their unfiltered counterparts in

terms of basic frequency and amplitude. This verifies that removing small-scale flow

structures indeed has little impact on the distant-field sound radiation. Since the

application of a box filter also alters the lower wavenumber (large-scale) components

to some extent, the actual agreement between unfiltered and filtered source quan-

tities might be even better had the large-scale motion been truthfully preserved.

The comparison made in Fig. 9 is also an indication of numerical convergence. It

illustrates that the direct numerical simulation for the source field has adequately
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resolved the scales relevant to sound production. In fact, the simulation can be

conducted on a coarser grid if the subgrid-scale stress can be modeled adequately.
This suggests the promising role that can be played by the less expensive large-eddy
simulation methods for flow-noise prediction.

An issue worthy of particular attention is the relative importance of wall-shear-
stress radiation vs. volume Reynolds stress radiation. Eq. (2) and the numerical

results in Figs. 6 and 7 indicate that at the late laminar breakdown stage, vis-

cous dipole radiation is important or even dominant for low Mach number flows,

in agreement with Landahl (1975) but at variance with conclusions of Howe (1979)
and Haj-Hariri & Akylas (1985), who assert that surface stress contribution is in

general negligible. The contradiction may arise because Howe's (1979) analysis is

limited only to the low wavenumber (acoustic) components of the wavenumber-

frequency spectrum, whereas the analysis of Haj-Hariri & Akylas (1985) fails to
utilize the pertinent turbulence scales in estimating the Lighthill source terms at
high Reynolds number. Furthermore, the three aforementioned studies are all con-

cerned with fully turbulent boundary layers, although Landahl (1975) notes the

qualitative similarities between the high shear layer breakdown during transition

and the turbulent bursting in the inner layer of a turbulent boundary layer.

As an example, Figs 10a and 10b compare the distant sound field generated by,
respectively, the inviscid Reynolds stress (volume quadrupoles) and viscous wall-

stress (sum of surface dipoles and quadrupoles), in terms of iso-contours of the

acoustic pressure ,5 (= p - 1)) at X3 = 0 and t = 420. The source region is

centered at )_ = 0, bearing in mind that )( is scaled relative to the acoustic length

scale. The free-stream Mach number is M = 0.02, characteristic of underwater

applications. At the time instant plotted, the shear-stress induced sound is mainly

confined in a region close to the source (the latest signal depicted at 1)_[ = 10 is
emitted at t = 410). The quadrupole radiation pattern suggests contributions from
the longitudinal components, but not the lateral ones. The latter are identically

zero due to both cancellations from wall reflection and the specific plane (X3 = 0)
selected for plotting (cf. (2)). Given the extremely low Mach number, the total

radiated field obtained by summing the results in Figs. 10a and 10b is dominated

by the surface stress contribution, as is evident from Fig. 10c. The relative effect of

volume quadrupoles is, of course, also dependent on the orientation of the plotting
plane. For instance, quadrupole radiation is felt more strongly in the X1 = 0 plane

than in the plane plotted. When the Mach number is increased to M = 0.1, the

volume quadrupole sound is found to be comparable in strength with that due to
wall-shear-stress, particularly in the plane Xx = 0.

3. Conclusions and future directions

A computational study has been carried out concerning the sound emission from

a localized disturbance as it undergoes transition to turbulence in a boundary layer

formed on a flat, rigid surface. The flow is characterized by small free-stream Mach

number and a Reynolds number of 1000 based on the displacement thickness. Direct

numerical simulation is applied in conjunction with the Lighthill acoustic analogy



Acoustics of laminar boundary layer breakdown 239

(a)

-60 60

X1
(b)

60

,, ,,, ,, ,;,:::/,//::.;:,::":::,:,,!.

-60 60

X1
(c)

, , /, ,,,,,,;;,,.;/'.':

• ''° .... \ I
-60 60

X1

FIGURE 10. Iso-contours of the far-field acoustic pressure in the pl_ne X_ = 0 at

t = 420, radiated during laminar breakdown of an isolated wave packet. The free-

stream Mach number M = 0.02. (a) Volume Reynolds stress contribution (contour

levels from -1.02 x 10 -1_ to 0.50 x 10-_2); (b) wall shear-stress contribution (contour

levels from -2.25 x 10 -11 to 2.31 x 10-_1); (c) total acoustic pressure (contour levels

from -2.31 x 10 -11 to 2.19 x 10-11).
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to determine the near-field flow dynamics and the far-field sound, respectively. The

objectives are to establish a relationship between specific flow processes and the

emitted acoustic signals, and to identify the primary noise source.

The boundary-layer disturbance initially consists of a modulated, three-dimensional

T-S wave packet emulating that excited by free-stream turbulence in natural tran-

sition. Detailed accounts of the subsequent evolution, from the early linear stage

to the final laminar breakdown, are obtained by solving the full incompressible

Navier-Stokes equations. The simulation allows streamwise growth of the boundary

layer thickness as well as spanwise asymmetry. The latter effect promotes inter-

action between the (unequal) lambda vortex legs and accelerates the high shear

layer breakdown and the associated eddy shedding. The route to turbulence is seen

to follow the usual sequence of events for the fundamental breakdown type. The

flow structures are in qualitative agreement with the experimental observations of

Borodulin and Kachanov (1992).

Acoustic computation based on the Lighthill theory is facilitated by a multipole

Taylor series expansion in the compact source limit. The radiated far-field acoustic

density (pressure) comprises of, to O(M 5) relative to the mean, contributions from

net surface dipoles caused by viscous wall shear stresses, net volume quadrupoles

due to fluctuating Reynolds stresses, and net surface quadrupoles due to finite

spatial distribution of wall shear stresses. All the sources produce negligible sound

throughout the primary and secondary instability processes of the wave packet. As

the detached high shear layer starts to disintegrate, dramatical amplification occurs

for the volume quadrupole sound. The primary frequency (5-7 times the basic T-S

wave frequency) of quadrupole radiation corresponds to the frequency of hairpin

eddy (spike) generation in the near-field, indicating the latter to be the physical

source. The surface dipole and quadrupole sources experience a surge in strength

at a later breakdown stage caused by the activation of the high-shear wall layer as

the disturbance region evolves to a turbulence spot.

This study suggests that for boundary layer transition at low Mach number, the

fluctuation in viscous wall stress takes a significant part in radiating sound to the

surrounding. It is in fact the primary sound source at later laminar breakdown

stages.

An interesting extension of the present work would be to explore the suitabil-

ity of large-eddy simulation (LES) techniques for simulating the laminar boundary

layer breakdown process and calculating the acoustic source terms. LES possesses

tremendous potential in terms of reducing the computational cost drastically while

still capturing the energy-containing unsteady flow features essential to noise gen-

eration. An earlier study by Piomelli et al. (1990) suggests that the Smagorinsky

subgrid-scale (SGS) model is excessively dissipative, resulting in less intense high

shear layers and delayed transition. New SGS models developed at CTR, such as the

dynamic SGS model (Germano et al. 1991), offer improved prospects for predicting

the important transitional flow structures accurately.

A separate project commenced recently concerns noise radiation caused by turbu-

lent flow past a hydrofoil/airfoil. Broadband noise is known to exist when turbulent
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boundary layers interact with a sharp trailing edge as a result of hydrodynamic pres-

sure scattering. In addition, high angles of attack and blunt trailing edges cause

flow separation and vortex shedding, which are the source of distinct peaks in the

noise spectra (Brooks & Hodgson 1981). A numerical noise-prediction method will

be developed using LES in conjunction with aeroacoustic theories. The turbulent

boundary layer and near-wake flows are simulated using LES, and the radiated
far-field sound is calculated within the framework of the Lighthill theory, taking ad-

vantage of experiences gained through the present project. The prediction method

can be validated by comparing the numerical results with the experimental data of

Brooks & Hodgson (1981).
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Small-scale behavior in distorted turbulent

boundary layers at low Reynolds number

By Seyed G. Saddoughi

1. Motivation and background

During the last three years (Saddoughi 1993a; Saddoughi 1993b; Saddoughi &

Veeravalli 1994), we have conducted high- and low-Reynolds-number experiments,

including hot-wire measurements of the velocity fluctuations, in the test-section-

ceiling boundary layer of the 80- by 120-foot Full-Scale Aerodynamics Facility at

NASA Ames Research Center, to test the local-isotropy predictions of Kolmogorov's

(1941) universal equilibrium theory. This hypothesis, which states that at suffi-

ciently high Reynolds numbers the small-scale structures of turbulent motions are

independent of large-scale structures and mean deformations, has been used in

theoretical studies of turbulence and computational methods such as large-eddy

simulation: however, its range of validity in shear flows has been a subject of con-

troversy. The present experiments were planned to enhance our understanding of

the local-isotropy hypothesis.

Our experiments were divided into two sets. First, (Saddoughi & Veeravalli 1994)

measurements were taken at different Reynolds numbers in a plane boundary layer,

which is a "simple" shear flow with the basic mean strain rate S =_ OU/Oy. Here

our results established the conditions under which local isotropy can be expected in

simple shear flows. Detailed analyses of these data have been already presented in

our previous reports. The main conclusions were that the lower-wavenumber limit of

locally-isotropic behavior (negligible shear-stress cospectra) is given by kl V/_S z

10. Our investigation also indicated that for energy spectra this limit could be

relaxed to kl V/_/S 3 ,_ 3; this is Corrsin's (1958) criterion, with the numerical value

obtained from our data. The existence of an isotropic inertial range requires that

this wavenumber be much less than the wavenumber at the onset of viscous effects

so that the combined condition (Corrsin 1958 and Uberoi 1957) is SV/-_/e << 1.

Spectral "bumps" between the -5/3 inertial range and the dissipative range were

observed on all the compensated energy spectra. The shear-stress cospectra rolled

off with a -7/3 power law and scaled linearly with S (Lumley 1967). In summary,

it was shown that one decade of inertial subrange with truly negligible shear-stress

co-spectral density requires S_/-_ not more than about 0.01 (for a shear layer

with turbulent kinetic energy production approximately equal to dissipation, this

implies a microscale Reynolds number of about 1500).

Second, experiments were designed to address this question: will our criteria for

the existence of local isotropy hold for "complex" non-equilibrium flows in which

extra rates of mean strain are added to the basic mean shear. In our last report

(Saddoughi 1993b) we showed that the small-scale data taken at different locations

in a highly-distorted boundary layer at high microscale Reynolds numbers (1750
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to 2000) behaved similarly to the simple shear flow case, and that they satisfied

the local-isotropy predictions. In the current report the results of our experiments

conducted in complex flows at low Reynolds numbers at a variety of extra mean

strain rates are presented.

2. Accomplishments

2.1 Apparatus and measurement techniques

We have studied the plane-of-symmetry flow in front of a circular cylinder placed

vertically in a fully developed two-dimensional turbulent boundary layer. In this

type of flow, the pressure rises strongly as the obstacle is approached, and the

boundary layer is also influenced by the effects of lateral divergence. Hence, in

addition to the basic mean shear, OU/Oy, the extra mean strain rates involved in

the flow are OU/Ox, OV/Oy, and OW/Oz. To obtain the desired effects, the size of

the cylinder should be at least of the order of the thickness of the boundary layer.

Since in our study the approaching boundary-layer thickness was approximately

1.1 m, the following dimensions were chosen for our test cylinder: D = 1.22 m and

height L = 1.83 m. Our measurement location was fixed at x/D ,_ 0.85 with respect

to the front of the cylinder.

We presented (Saddoughi 1993b) a very brief review of the experimental inves-

tigations dealing with the large-scale structural changes that occur in this kind of

flow, and also gave a detailed description of the test cylinder and other apparatus

used in our experiments. The measurement strategy, instrumentation, and pro-

cedure were all similar to those explained by Saddoughi _5 Veeravalli (1994), and

details will not be repeated here.

Our low-Reynolds-number complex-flow experiments are divided into two cases:

boundary layers under the influence of (i) large and (ii) small, extra mean strain
rates. These two flow cases are described below.

$.,_ Distorted boundary layers: Large eztra-strain-rate experiments

Fig. 1. shows a schematic diagram of the test cylinder attached to the ceiling of

the 80 _ x 120' wind tunnel. During our complex-flow measurements the tunnel runs

were dedicated to our experiments; however, as shown in Fig. 1, a full-scale F-18

fighter aircraft set at an angle of attack of 50 ° was present in the central region of

the working section for both the high- and low-Reynolds-number measurements. It

will be shown later that the presence of the aircraft in the tunnel usefully increased

the mean strain rate in front of the cylinder.

Our low-Reynolds-number measurements have been taken at a reference velocity,

U,._ I = 10.75 m/s. The mean-flow data for this case are compared with the data

for the high-Reynolds-number large-extra-strain-rate case in Fig. 2.

The normalized profiles of the longitudinal mean velocity, U/U,._f, for the dis-

torted boundary layers are compared with the profiles obtained for the plane bound-

ary layer in Fig. 2(a), where y is the distance from the wall. The shapes of the

velocity profiles for the distorted boundary layers are typical of the large adverse-

pressure-gradient flows: note the flattening of the profiles in the middle of the layer.



ATTIC

FLOW

TEST CYLINDER

q,,b°

C_

¢p,

t_

e,,,,,

"t

FIGURE 1. A schematic diagram for the large extra-strain-rate experiments,
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FIGURE 2. Mean-flow data at high and low Reynolds numbers. (a) Normalized

longitudinal mean-velocity profiles, U/Urel, measured in large extra-strain-rate and

plane boundary layers. (b) Normalized vertical mean-velocity profiles, V/U,.,I,

measured in large extra-strain-rate boundary layers. (c) Flow yaw-angle profiles,/3,

measured in large extra-strain-rate boundary layers at different spanwise locations.

• , U,.,I _, 50 m/s and = , U,.,I ,_ 10 m/s plane boundary layer; i , U,._! ,_ 51.25

m/s and [], Ur, l _ 10.75 m/s large extra-strain-rate boundary layer.
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The boundary-layer thickness, 6 (the point where U/U, = 0.995), has increased to

approximately 1250 mm in the distorted boundary layer. Here the shape factor
H _ 1.85, mad at the edge of the boundary layer the pressure coefficient Cp _ 0.23.

Fig. 2(b) shows the normalized profiles of the vertical velocity component, V/Ur_I.
A least-squares polynomiM fit to the V profile was used to obtain the values of

ovIo_.
The magnitudes of the extra strain rate due to the streamline divergence, OW/Oz,

influencing the plane of symmetry of the flow can be obtained from (OW/Oz) -

U(O/3/Oz) (see e.g. Saddoughi & Joubert 1991), where /3 is the flow yaw angle
measured at different spanwise locations z. The profiles of/3 measured by a yaw-

meter probe for three spanwise locations (z/D = -0.21, 0, and 0.21) through the

boundary layers axe shown in Fig. 2(e). It can be seen that, as expected, in the

plane of symmetry of the flow the erossflow, W, is approximately equal to zero. The

profiles are typical of three-dimensional boundary layers: larger flow yaw angles near

the wall than the freestrearn.

Finally, the continuity equation was used to obtain the OU/Ox values. For both

our high and low Reynolds number distorted boundary layers, typical values of

(OU/Ox)/(OU/Oy), (OV/Oy)/(OU/Oy), and (OW/Oz)/(OU/Oy) were larger than 0.1,

0.2, and 0.3 respectively. These large extra-mean-strain rates produce large non-
linear effects on the large-scale structures of the boundary layers (Bradshaw 1973).

2 2
/Ur, y, uz/U_,I) , andThe profiles of the Reynolds normal stresses (ul/Ur, y,u_ 2 2 2

2the shear stress, -ulu2/Ur_ I, for the distorted boundary layers at high and low

Reynolds numbers are compared with the profiles for the plane boundary layers in
Fig. 3. The profiles for the distorted bo__undary layers appear to be quite different
from the plane flow case. The peaks of u_ and the shear stress, -ulu2, profiles have

moved away from the wall to y _ 300 mm, and in the outer part of the layer the

values of all the Reynolds stresses have increased.

From Fig. 3(d) it can be deduced that at the wall r/pU_,i _ 0.0003. Also from

Fig. 2(a) note that at the edge of the boundary layer U/U_ I ,_ 0.88. Based on
the above values, a C I _ 0.00078 can be obtained, which corresponds to shear

velocities U_ _ 0.89 m/s and 0.186 m/s for the high-Reynolds-number and low-

Reynolds-number cases respectively. Using U_ as the scaling velocity, the Reynolds

shear-stress profiles are replotted in Fig. 4. These large changes in the large-scale
structure of turbulence are due to the effects of large adverse pressure gradients (see

Bradshaw 1967).

e.e.1 Analysis of small-scale data: low-Reynolds-number case

As mentioned earlier, the spectral measurements taken in this highly-distorted

boundary layer at high Reynolds number were presented in our last report where
it was shown that these data satisfied local-isotropy predictions. Hence, in the

following we will concentrate only on the low-Reynolds-number experiments.
The spectral measurements of the three components of the velocity taken at

y = 100 mm (inner-layer), 300 mm (maximum shear stress), 500 mm (around mid-

layer), and 700 mm (outer-layer) for the low-speed case are analyzed here. In this

case, the microscale Reynolds number range was about 850 to 650.
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(c) u3/U,._1,22 (d) -u-'i_/U_el. For key to symbols see Fig. 2.
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velocity scale. For key to symbols see Fig. 2.

Compensated spectra can be defined as ¢-2/3k[/3Eaa(kl), where a = 1, 2 or 3

(no summation over a). In the inertial subrange, these should be independent of

wavenumber and equal to the Kolmogorov's constants for one-dimensional spectra.

In Fig. 5 the compensated longitudinal spectra at the four y-positions are plotted

against k177. The compensated ninth-order, least-square log-log polynomial fits of

Ell (kl) are also presented in this figure. Here the dissipation value at each measure-
ment location was obtained from the isotropic relation e = 15Vfo k_Ell(kl)dkl

(e.g. Batchelor 1953). (For details see our previous reports.) As can be seen in

this figure, the ul-spectra (single wire) at all the measurement locations have -5/3

ranges and the Kolmogorov constant C = 1.5 (i.e. C1 = 18C/55 = 0.491) (Monin &

Yaglom 1975; Saddoughi & Veeravalli 1994) agrees reasonably well with the present

data.

The compensated u2- and u3-spectra are presented in Figs. 6 and 7 respectively.

These two figures illustrate several points. (i) They show that the extent of -5/3

range of the transverse spectra reduces when the wall is approached. This is similar

to the behavior of the spectra for the zero-pressure-gradient boundary layer. (ii)

At the inner-layer position, isotropy is satisfied and the densities of the transverse

spectra in the inertial subrange are equal to 4/3 times that of the ul-spectrum.

However, when the outer part of the bovndary layer is approached, there is an

increased deviation from isotropic behavior. (iii) All the compensated spectra at

the outer-layer position (y = 700 ram) have a new "bump" between the large-scale

range and the inertial subrange. (iv) At all the measurement positions, to within

the accuracy of measurement, the u3- and u2-spectra are equal to each other in the

inertial subrange and dissipation range. This is further illustrated in Fig. 8, where

the ratio of the measured u3-spectrum to u2-spectrum, Es'_eaS(kl)/E_ea'(kl), at

each y location is plotted against kl r/.

All of the above measurements were repeated by taking data on different days

with different hot-wire elements having different calibrations and using different

anemometers. Also, the ul-spectra obtained by X-wires in x-y and x-z planes
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(outer-layer), Rx ,_ 650; (b) y = 500 mm (around mid-layer), Rx _ 820; (c) y = 300

mm (maximum shear stress), Rx _ 800; (d) y = 100 mm (inner-layer), Rx ,_ 830.
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for (a)-(d) see Fig. 5.
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FIGURE 8. Ratios of the measured u3-spectra to u2-spectra at different locations

in the large extra-strain-rate boundary layer at low Reynolds number• For key to

captions for (a)-(d) see Fig. 5.

compared well with the spectra measured by single wires (shown in Fig. 5).

If the motion is isotropic, the transverse spectra E22(k] ) and E33(k] ) are uniquely

determined by the longitudinal spectrum E]_(k_) (e.g. Batchelor 1953): E22(k]) =

E3_( k] ) = 1_(1 - k]o-_)Ea_(k_ ). The transverse spectra, z:_22_"calctl"l,_X)and _33_'_calc(1"[_11,_

can be calculated from the measured longitudinal spectrum, E_"_(k]), using the
_'_calc( k _l_n_eas/]¢ \above equation• An anisotropy measure may be defined as _a t ] }[L:cotot [ 1 ],

where a = 2 or 3 corresponds to u2 or u3 respectively• These anisotropy measures
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FIGURE 9. Ratios of the calculated to measured transverse spectra at different

locations in the large extra-strain-rate boundary layer at low Reynolds number. (a)

u2-ratio; (b) u3-ratio. _, y = 700 mm (outer-layer), Rx _ 650; ........ , y = 500

mm (around mid-layer), Rx _ 820; m.__ , y = 300 mm (maximum shear stress),

R_ _ 800; .... , y = 100 mm (inner-layer), Rx _ 830.

should be equal to 1.0 in an isotropic flow. We have used the least-squares fit data

in Figs. 5, 6, and 7 to calculate these measures, which are plotted against klo in

Fig. 9. These measures clearly show that, as expected from our earlier observations

of the compensated spectra, at the inner-layer position, isotropy is satisfied, and

when the outer part of the boundary layer is approached, the transverse spectra

deviate from the local-isotropy predictions.

We showed (Saddoughi 1993b) that our small-scale measurements in the highly-

distorted boundary layer at high Reynolds number followed the local-isotropy pre-

dictions. For the same flow at low Reynolds number, isotropy is satisfied in the

inner-layer position; however, it appears that in the outer parts of the boundary

layer, the small-scale behavior is better described by local-axisymmetry assump-

tion about the streamwise direction (Batchelor 1946) since the measured transverse

spectra are equal to each other and they deviate from the isotropy predictions.

The correlation-coefficient spectra, R12(kl) = -E12(k1)/x/E11(kl)E22(kl), are

plotted in Fig. 10. In isotropic flow the shear-stress cospectrum, E]2(kl), which

satisfies fo E12(kl )dkl = -ul u2, is equal to zero. This indicates that the correla-

tion coefficient spectrum should fall to zero at high wavenumbers. This condition

should also be satisfied for a locally-axisymmetric flow. As can be seen in Fig. 10,

for all the measurement positions in this boundary layer the R12(kl) spectra drop

to zero at high wavenumbers, but as noted before (Saddoughi & Veeravalli 1994),
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FIGURE 10. Correlation-coefficient spectra obtained at different locations in the

large extra-strain-rate boundary layer at low Reynolds number. For key to captions

for (a)-(d) see Fig. 5.

both positive and negative values are inferred from the measurements in the high-

wavenumber ranges for all the measurement stations. However, in the dissipation

ranges of the present ease at the measurement locations close to the wall, average
values of R12(kl) appear to be slightly negative• Based on their model for Taylor-

hypothesis correction, Wyngaard & Clifford (1977) suggested that the convection
velocity fluctuations could alias enough spectral content into the measured cospec-

trum to make it appear to change sign at large/q. At the inner-layer station where
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FIGURE 11. Normalized mean-velocity profiles for different boundary layers.

(a) U/Ur_I; (b) V/Ur,/. , plane boundary layer at low and high Reynolds

numbers; --, large extra-strain-rate (with F-18) boundary layer at low and high

Reynolds numbers;/s,, small extra-strain-rate (without F-18) boundary layer at low
Reynolds number.

the local turbulence intensity for the current experiment is approximately 0.2, the

errors arising from the use of Taylor's hypothesis can be large in the dissipation

range, and the present data appear to follow the trend suggested by Wyngaard &
Clifford (1977).

2.3 Dis_orted boundary layers: Small eztra-strain.rate experiments

In order to isolate the reasons for the deviations of the transverse spectra from

the local-isotropy predictions in the outer parts of the distorted boundary layer at

low Reynolds number, we repeated our measurements in front of the cylinder after

the F-18 aircraft was removed from the 80' × 120' wind tunnel.

The normalized profiles of the longitudinal mean velocity, U� Ur_I, and the vertical

velocity component, V/Urn/, for this case measured at low Reynolds number, are

compared with the profiles obtained for the plane boundary layer and the large

extra-strain-rate case (with F-18) in Fig. 11. It is clear that the removal of the

F-18 from the wind tunnel reduces the magnitudes of the extra mean strain rates in
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FIGURE 13. Compensated longitudinal and transverse spectra measured at y =
300 mm in the small extra-strain-rate boundary layer at low Reynolds number

(Rx ._ 790). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) ul-spectrum; (b) us-spectrum; (e) u3-spectrum.

front of the cylinder. This reduction can be seen also on the profiles of the Reynolds

stresses, shown in Fig. 12.

_.$._ Anal_.tsis of small-scale data: low-Re_tnolds-number case

The compensated spectra of the three components of the velocity taken at y = 300

ram, 500 mm, and 700 mm for the low-Reynolds-number case are shown in Figs. 13,

14, and 15 respectively• Recall from Figs. 6 and 7 that the deviations from the
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FIGURE 14. Compensated longitudinal and transverse spectra measured at y ----

500 mm in the small extra-strain-rate boundary layer at low Reynolds number

(Rx ,_ 760). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) Ul-spectrum; (b) u2-spectrum; (c) u3-spectrum.

small-scale isotropy took place only at these three y locations. However, for the

present case, without the presence of the F-18, the transverse spectra at all the

measurement stations follow the local-isotropy predictions: i.e. at each station the

transverse spectra are equal to each other and are larger than the ul-spectrum by

the 4/3 factor.
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FIGURE 15. Compensated longitudinal and transverse spectra measured at y =

700 mm in the small extra-strain-rate boundary layer at low Reynolds number

(Rx _ 560). Solid lines are the ninth-order, least-square, log-log polynomial fits to

the spectral data. (a) u]-spectrum; (b) u2-spectrum; (c) u3-spectrum.

3. Closure

Further analysis of all the data taken in distorted boundary layers at high and low

Reynolds numbers is in progress. However, our complex-flow experiments (see also

Saddoughi 1993b) have again highlighted an important fact: as long as the high-

Reynolds-number requirement - which is an intrinsic part of the local-isotropy
hypothesis - is satisfied, the small-scale structures of turbulent motions become

independent of large-scale structures and the mean deformation rate (Kolmogorov
1941).
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Transverse vorticity measurements in the NASA
Ames 80x120 wind tunnel boundary layer

By J. F. Foss 1, D. G. Bohl l, F. D. Bramkamp 2, AND J. G. Klewicki 3

1. Motivation and objectives

The MSU compact four-wire transverse vorticity probe, see Fig. 1, permits w=(t)

measurements in a nominally 1ram 2 domain. Note that a conventional coordinate

system is used with x and y in the streamwise and normal directions respectively.

The algorithms to extract w(t) from the four simultaneously sampled voltages and

the relevant uncertainty considerations are reported by Foss and Haw (1990). Typ-

ical results, from earlier studies can be found in Haw, et al. (1989), Bruns, et al.

(1991) and Foss (1994).

The purpose of this investigation was to acquire time series data - in the same

access port at the ceiling of the 80 ft × 120 ft wind tunnel (NASA Ames Research

Center) as earlier used by the Wallace group from the University of Maryland - and

to compare the present results with those of the three-component vorticity probe
used in that earlier study. See Wallace, et al. (1992) and Wallace and Ong (1995) for

this earlier investigation. Note that both these earlier and the present off-centerline

results can also be compared with the centerline (at the same streamwise location)

measurements reported by Saddoughi and Veeravalli (1994).

The technical objectives of the latter investigation, which were definitively

achieved, were to examine the degrees to which local isotropy conditions describe

the large turbulent Reynolds number (Rx = _)_/v = 500 and 600 at y = 100 and

515 mm from the wall respectively) conditions of this turbulent boundary layer.

Their investigation provides an excellent framework for the evaluation of the data

sets from the two complementary (and much briefer) studies.

The University of Maryland probe has a sample domain of approximately 1.5 mm

diameter in the plane normal to the stream and a length characterized by the con-

vected frame derivative evaluation (approximately 1 ram). Given these dimensions

and given the approximately 1 mm 2 dimension for the MSU probe, it is advanta-

geous to make measurements in as large a flow as possible. Hence the nominal

boundary layer thickness of 1 m (at the NASA Ames tunnel) presented a most

attractive measurement environment for these two research groups. Both sets of

measurements were executed at U_ = 10 m/s.

From Saddoughi and Veeravalli (1994) the Kolmogorov microscales at 100 and

515 mm from the wall can be estimated for Uo_ = 10 m/s; viz., r/t, = 0.18 mm (y =

100 mm) = 0.32 mm (y = 515 mm).

1 Michigan State University

2 RWTH, Achen, Michigan State University

3 University of Utah
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FIGURE 1. The MSU compact vorticity probe, a). Probe geometry; b) A schematic
representation of the micro circulation domain, h = separation between parallel
probes; a = average pitch angle associated with the time steps to roduee the con-

vected length (b); d, c = angle and length (as above) for the next time step in the
time series.

The latter permits the probe scale of 1 mm to satisfy the Wyngaard (1963)
criterion of h/71 -_ 3 to fully resolve the vorticity.

2. Accomplishments

The data processing for these experiments is in progress. Sufficient results are

in hand to ensure a body of viable data (i.e., the pre- and post-calibrations show
quite satisfactory agreement); however, no flow field results will be included in this
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FIGURE 2. Work area-access port at the ceiling of the 80 ft ×120 ft NASA Ames

Wind Tunnel. All dimensions in inches.

report. It is anticipated that a full reporting of the velocity and transverse vorticity
values will be available for the 1995 CTR Annum Research Briefs.

_.1 The experimental apparatus

The present co-author, F. Bramkamp, prepared his second Studienarbeit (see

Bramkamp (1994)) on the basis of the design, implementation, and initial results

evaluation for this project. The traverse system designed by him will be briefly

noted herein.

There is a twofold significance of our reporting on this traverse device: i) the

components are in storage at MSU; their loan can be arranged should they be

useful to a subsequent investigator, and ii) the Bramkamp design is known to meet

the strict safety requirements of the NASA test engineers and these specifications

are detailed in his thesis.

Fig. 2 presents the work area for the access port at approximately 50 m from the

end of the contraction; this site is at the 1/4 width location to the left (looking

streamwise) of the tunnel centerline. Fig. 3 shows the traverse system that was
fabricated for these measurements. A "trap door", labeled 19a, b in Fig. 3, was

opened to pass the probe holder assembly (17, 18) through the plane of the tunnel

ceiling. The actual probe holder (18) was removed and the probe was attached to

the portable traverse rig to accomplish the pitch-angle flow-speed calibration map

(see Section 2.2).
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Data time series from y _ 100 mm to nearly the full extent (1.3 m) of the traverse

system were acquired with this device. The top view (Fig. 3b), shows the open tube

(8) that was used for the probe (hot-wire and thermistor) cables.

A portable calibration tunnel, with provision for orienting the probe at +36 ° in

pitch and providing a 2 to 12 m/s flow-speed range, was used before and after each

approximately two-hour data session.

_._ Calibration data

The pre- and post-calibration data sets have been subjected to comparative anal-

ysis by: i) fitting the form

E_(Q,7) = A(7) + B(_)Q "('Y) (1)

to each pitch angle (7), and ii) comparing the separate calibrations to the A, B, n
values of the combined calibration data set.

The first evaluation (i) is to ensure (by a sufficiently small standard deviation

between measured and computed velocities) that the individual calibrations have

integrity. The second evaluation (ii) is to ensure that any drift in the voltage-

velocity transfer function for each wire was sufficiently small during the time period

required for the measurements.

The single wire probe data at y =100, 112.6, 87.4 mm and y =515, 549, 481

mm were used to evaluate _ and q from the integral of k 2, E(k). Specifically, the

averaged coefficients in (1) agreed with the respective calibrations to within + 0.3%.

The parallel array and one of the slant wires of the transverse vorticity probe

showed quite satisfactory agreement using these criteria for the above y locations

plus a second data session that provided data at y =100, 300, 515, and 900 mm
from the wall.

If the pitch angles of the flow exhibit a sufficiently small range approximately

+15 °, then the single slant wire can adequately resolve the magnitude and direction

of the velocity for the "three-wire" probe. Fortunately, preliminary data processing

suggests that this situation is obtained.

2.3 Flow field data

Twelve time series data sets (El, E2, E3, E4) were acquired at a rate of 30 kHz

and for a time period of 13 seconds at the y = 100 =£0, 12.6 m locations. Eight data

sets (same conditions) were acquired at y = 515, i0, 34 mm before the tunnel was

"shut down". Note that the =hy positions are to provide an unambiguous value for

the time mean vorticity; namely, _.

The second acquisition session provided 85 data sets at each of the y locations

(0.9 to 0.1 m) using a 30 kHz sample rate and a duration of 16.6 seconds per set.

3. Future plans

The flow field data will be processed using the viable calibration data. Direct

comparisons with the results of Saddoughi and Veeravalli (1994) and with Wallace,

et al. (1992) will then be made. The "activity intermittency", introduced by Haw,
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et al. (1989) will be used to interrogate the outer region signals. Comparisons with

the intermittency data from the large two-stream shear layer at the University of

Houston (using the same probe) will be of particular interest. See Foss, et al. (1994)
for a brief indication of the latter.

The vorticity-vorticity correlation functions will be of particular interest at the

minimum y position in the boundary layer. These correlations, in the large Ro
condition of the one- and two-stream shear layers, show pronounced small- and

large-scale effects. Specifically, the correlation function drops sharply for small
displacements but retains significant values for unexpectedly large displacements.

These free shear layer considerations have been identified by Foss, et al. (1993) and
Foss (1994).
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Experimental and numerical study
of the intermittency exponent

By Alexander Praskovsky 1

1. Motivation, background, and objectives

After publication of the Kolmogorov (1962) refined similarity hypotheses, the

small-scale intermittency of the energy dissipation field became a central problem

in fully developed turbulence (FDT). This phenomena has been studied in many

different ways, e.g. by searching for corrections to scaling exponents in the inertial

range velocity structure functions (see reviews in Monin & Yaglom 1975, Kuznetsov

& Sabelnikov 1990). A direct measure of this intermittency is, however, available

by studying the local rate of energy dissipation, and it may be quantitatively char-

acterized by the intermittency exponent # (Nelkin 1981).

The first description of the intermittent field was proposed by Kolmogorov (1962),

who introduced the energy dissipation er averaged over a segment r:

e(x + x)dx, (i)
1

0

where x is the longitudinal coordinate, and the local value of the energy dissipation

e(x) is defined in the standard way as

= + Ox,]' (2)

where _ is the kinematic viscosity, and u_, i = 1, 2, 3, denote the velocity compo-

nents in the directions x_. To analyze experimental data and compare them with

numerical modeling, the one-dimensional sections of the energy dissipation field in

the x - Xl direction will be considered throughout this paper.

It was assumed by Kolmogorov that er has the normal probability density dis-

tribution (pdd) if r belongs to the inertial range, i.e., 77 << r << L where L and

denote the integral and Kolmogorov viscous scales, respectively. This assumption

is known as the log-normal model. Kolmogorov further assumed that the variation

of In e_ obeys a logarithmic scaling

a_,_ = A + Pk In(L/r), 77<<r<<L, (3)

where A is some function of the local flow conditions, and pk is the intermittency

exponent which was assumed to be a universal constant (if there is zlo intermittcncy,

1 National Center for Atmospheric Research, Boulder, Colorado 80307-3000



270 A. Praskowky

pk - 0). Different subscripts to p are adopted to identify different definitions of

the intermittency exponent.

Novikov & Stewart (1964) showed that

< _(x) > o_ r-"', . <<_ <<L. (4)

Hereafter the angular brackets denote average over x. Novikov (1990) demonstrated

that under some weak assumptions #k = #e.

It was also found (Monin & Yaglom 1975) that the correlation function of energy

dissipation Re(r) obeys the power-law scaling at separations r within the inertial

range

Re(r) - < c(x) c(x + r) > = C, < c >_ (r/L)-", ,1<< r <<:L, (5)

where Ce is assumed to be a universal constant, and ttr = pc.

Monin & Yaglom (1975) further assumed that at very high Reynolds numbers,

where fluctuations of ¢(x) are much larger than < _ >,

Re(_) _ Be(_) ---< k(z)- < _ >] [_(x+ _)- < _ >] > 0, _-"_, _ <<_ <<Z,
(6)

and the energy spectrum of ¢ (which is the Fourier transform of Be) should behave

as

OO

E,(k) = -rl f Be(r) cos(kr) dr o¢ k -'+_', 1/L << k << I/7, (7)
0

where k is the wave-number.

Relations (3)-(7) are commonly used to estimate ft. Several more methods for

such an estimate are also well-known, e.g. by using the six-order velocity structure

function (Monin & Yaglom 1975), the breakdown coefficients (Novikov 1990), etc.

but in this brief paper only methods based on (3)-(7) are considered.

A diverse body of measurements of # in different laboratory flows as well as

in the atmosphere and ocean has been reported during the last three decades (for

comprehensive review see Kuznetsov & Sabelnikov 1990, Gibson 1991, Nelkin 1994).

The reported values of tt vary from 0.15 to 0.7, and this scatter certainly exceeds
the measurement errors. Some theoretical considerations as well as the scatter in

experimental results caused a doubt about universality of the exponent # (e.g.,

Kraichnan 1974, Nelkin 1994). However, as far as we know, nobody has posed an

obvious question: Is the intermittency exponent tt a unique constant, i.e., are the

values #k, tte, ttr, #b, and tie the same at high Reynolds numbers, or do they create

a set of different (and perhaps independent) exponents? This paper addresses the

above question using the high Reynolds number experiments.

The second objective of this paper becomes clear from the following considera-

tions. It is commonly assumed (e.g., Monin & Yaglom 1975, Nelkin 1981) that the
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longitudinal component Ou/Ox should contain most of the important dynamical in-

formation on the dissipation field. In other words, it is assumed that the exponents

# defined by Eqs. (3)-(7) would not be changed if the true local rate of energy

dissipation c(x) were replaced by the one-dimensional surrogate

e(x) = 15 v (OulOz)2. (8)

Nelkin (1981) commented, "this rather weak assumption seems plausible, but is

difficult to test experimentally". We are not so optimistic about the "weakness"

of this assumption. Indeed, it is well-known (e.g., Hosokawa and Yamamoto 1991)

that pdd of _(x) and g(x) are qualitatively different. The second statement, namely

"difficult to test experimentally", is completely valid. In most experiments nothing

more than u(x) has been recorded, and in some experiments simultaneous measure-

ments of u(x) and u2(x) were executed. There are also a few experiments at low

Reynolds numbers (see Tsinober et al. 1992, and references therein) where all terms

in Eq. (2) were directly measured with multi-wire probes. However, the reliability

of such measurements, especially at high Reynolds numbers, still seems to be rather

questionable.
The remarkable success of direct numerical simulations (DNS) of FDT during the

last decades offers another approach to such a test. In spite of well-known limitations

(relatively low Reynolds numbers, somewhat arbitrary boundary conditions, etc.),

DNS provides an exact solution of the Navier-Stokes equations and gives complete

information on the three-dimensional flow field. Using the numerical data base,

one can estimate (at least qualitatively) how adequately the true energy dissipation

c(x) is represented by the one-dimensional surrogate g(x). To execute such a test is

a second objective of this paper. This approach contradicts traditional belief that

measurements give the "final truth", and any theoretical or numerical result should

be tested by comparison with experiment. We believe that numerical modeling (now

fairly called numerical experiment) becomes so powerful and reliable that it can be

used to test physical experiments. First results from this approach are reported in

this paper.

2. Accomplishments

2.1 Experimental and numerical data bases

The experimental data base includes measurements in the atmospheric surface

layer and in a large wind tunnel at very high Reynolds numbers.

The experiment in the atmospheric surface layer was executed by Dr. Steven

Oncley from the National Center for Atmospheric Research (Oncley 1992). After

preliminary processing, six time series were chosen from the total record (Praskovsky

&: Oncley 1994a). Four of these series are analyzed in the present work. The second

experiment was executed in the large wind tunnel of the Central Aerohydrodynamic

Institute (Moscow, Russia). Measurements have been done in the mixing layer and

in the return channel of the wind tunnel (Praskovsky et al. 1993).

The main flow characteristics of the experimental data base are listed in Table 1

where the abbreviations ML, RC, and ASL denote the mixing layer, return channel,
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and atmospheric surface layer, respectively, and numerals after ASL correspond to

the sequence of the time series (in accordance with that in Praskovsky & Oncley

1994a). U is the mean longitudinal velocity, and ao denotes the rms value of any

quantity ¢. The Taylor ,k and Kolmogorov 77scales, and the Reynolds number Rx,

are defined with standard formulas: )_ = au/aou/ox, zl = (v3/ < c >)1/4, and

Rx = auA/v. Other quantities in Table 1 will be defined later. Taylor's hypothesis

was used to convert from temporal to spatial coordinates.

Time series ML RC ASL-2 ASL-3 ASL-5 ASL-6

U, m/s 7.87 10.8 6.58 8.10 12.9 14.5
an, m/s 1.67 1.03 0.693 1.10 1.82 2.08
L, m 1.3 4.8 42 51 99 77
< ¢ >, m2/s a 1.90 0.115 0.0235 0.0322 0.140 0.128
A, cm 1.8 4.6 6.5 9.0 7.0 8.3
R_ x 10 -a 2.0 3.2 3.3 6.9 9.2 12.7
77,mm 0.21 0.41 0.58 0.55 0.37 0.37

+ an, 0.204-0.01 0.19+0.01 0.20+0.01 0.204-0.01 0.20+0.02 0.204-0.01

#"-g5=an, 0.38+0.01 0.32-t-0.01 0.35+0.02 0.29+0.03 0.33+0.02 0.304-0.02
la---;5: an, 0.595=0.03 0.60+0.02 0.574-0.04 0.614-0.02 0.56+0.02 0.55+0.01

:t: a_k 0.404-0.01 0.224-0.03 0.194-0.04 0.224-0.02 0.22-t-0.02 0.23-t-0.02
+ a_ 0.26+0.01 0.244-0.01 0.234-0.02 0.194-0.01 0.184-0.01 0.14+0.01

_/--;-t- a_, 0.424-0.01 0.38-t-0.01 0.414-0.02 0.384-0.01 0.364-0.01 0.354-0.01

Table 1. Main turbulence characteristics of analyzed time series.

The DNS of homogeneous, isotropic, equilibrium flow fields were executed by

Dr. Robert Rogallo from the NASA Ames Research Center. A description of this

data base, covering a range of R,_ from 35 to 168 can be found in Jimenez et al.

(1993). Two simulations at Rx = 94 and 168 are analyzed in the present work.

2.2 Experimental results for g( x )

2.2.1 Correlation functions and spectra

Two examples of the correlation functions Re(r) and Be(r) at the lowest and high-

est Rx are presented in Fig. 1. The local values of scaling exponents are estimated

using the logarithmic derivatives:

i_r(r) - d[lgRe(r)] d[lgBe(r)] dIlgEe(k)]
d[lgr]' #b(r)-- d[lgr]' p,(k)=l + d[lgk] (9)

It follows from Eqs. (5)-(7) that #_, /_b, and #, should be constants within the

inertial range. The measured values of/_r(r) and #b(r) are presented in Fig. 2.

The constant-value regions of these exponents are ill-defined, especially for/_b(r).

However, for each time series one can choose a range of separations r where the

exponents are approximately constant. Within these limits, deviations of # from

constant can be attributed to measurement uncertainty. The mean values h-7 and
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FIGURE 2. The local values of scaling exponents #r(r) and #b(r).

expanded linear scale of the ordinate at this and other similar figures.

• , RC; o, ASL-2; [], ASL-3; a, ASL-5; o, ASL-6.

Note the

• , ML;

standard deviations a_,,, (i = r, b) were estimated by averaging over these ranges,

and the results are listed in Table 1. It is seen that _ is significantly smaller than

p----_.This result is not surprising. Anselmet et aL (1984) found #r = 0.18 and pb =

0.48 in the round jet at Rx = 536. Kuznetsov et al. (1992) found #r _ 0.14,/_b

0.45, and Pe _ 0.60 in the mixing layer at Rx ,_ 1700. The equality Re(r) _ Be(r)

is based on the assumption that both R_(r) and Be(r) axe much larger than < _ >2
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in the inertial range (Monin & Yaglom 1975). This assumption is not valid at any

finite Reynolds number. It is seen in Fig. 1 that at big enough r, say at r/r 1 _ 103,

Be(r) is smaller than < 6 >2. Hence one should always obtain pr < pb. There is

a contradiction, recently noted by Praskovsky & Oncley (1994b). The correlation

functions are connected by the exact relation:

Be( ) = Re(,) - < >2. (10)

It obviously follows from this relation that at any finite R_ where < c >2 is of

the order of (or even larger than) Be(r) at 7/<< r << L, only one of the functions,

Re(r) or Be(r), may obey the power-law scaling. As was mentioned above, the

constant-value regions for both pr(r) and pb(r) are ill-defined. Taking into consid-

eration Eq. (10), one can suggest that the present experiments as well as all previous

measurements do not prove power-law behavior of any correlation function. The

results demonstrate that the power laws (5) and (6) reasonably approximate both

correlators within the inertial range.

Typical energy spectra Ee(k) and local values of the scaling exponents pc(k)

are presented in Fig. 3. It is seen that at large enough k the power law (7) gives

reasonable approximation of Ee(k). The mean values Tee and the standard deviation

cry,, are estimated over the ranges where p_(k) are approximately constant, and the

results are listed in Table 1. It is seen that _ are roughly twice h-_. This result

agrees with previous studies, and it is explained by Nelkin (1981). It follows from

Eq. (7) that #b =-- Pc if scaling (6) is valid for all r from 0 to infinity. In reality,

Be(O)� < e >2 increases with no limit as Rx ---* o¢ while the inertial range values

of Be(r)� < _ >2 increase more slowly. In other words, Be(r) has a strong peak

at r < r/, and this peak increases as Rx increases. As was shown by Kuznetsov
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Error bars at this and other similar figures correspond to the rms value of the

exponent, o, p--;'; zx, p'--_; D, p---;.

et al. (1990), Pb is always smaller than p_, and this difference may increase when

Rx increases.

The values of pr, #b, and _ are plotted in Fig. 4. Beyond any doubt, #r, pb,

and #, are different exponents at Rx up to 1,'2,700. Variation of these exponents

with Rx and the type of flow is quite small. As a first approximation, one can

consider the exponents #r _ 0.2, pb _ 0.3, and p, ,_ 0.55 to be universal (but

different!) constants at the highest Reynolds numbers currently attainable, say at

Rx > 2×103. At Reynolds numbers too high to be attained on this planet, the

different #'s could still be the same.

2.2.2 Test of the log-normal model

The log-normal model includes the statement that In ¢_ has a normal distribution

for 0 << r << L (Kolmogorov 1962). Note that this assumption and Eq. (3) are two

independent hypotheses, i.e., the log-normal model may be valid while Eq. (3) is

not, and vice-versa (see Castaing et al. 1990 for more explanation).

The log-normality of ln_ was tested in numerous experiments (see reviews in

Monin & Yaglom 1975, Gibson 1991), and this was found to give a reasonable

approximation of reality in different turbulent flows. The present experiments give

similar results. As an illustration, several distributions for segments r from the

inertial range are presented in Fig. 5. It is surprising that deviations of experimental

results from the log-normal model increase as Rx increases.

Eq. (3) was also reported by many authors to be valid (see Gibson 1991 and

references therein). However, Castaing et al. (1990) presented experimental and

theoretical evidences that at small r (up to the viscous range) the variation of In Cr

obeys the power-law scaling
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Hypotheses (3) and (11) are tested in Fig. 6. The localvalues of pk(r) and/3(r)
are defined as

d[a_nJ d[Ig _
ain't] (12)

/_k(r) -- d[ln r] ' /3(r) - d[lg r]

It is seen that at large r, say r/z/ > 200, the Kolmogorov (1962) assumption (3)

provides a good approximation of the experimental results. At small r Eq. (3) does

not agree with the present experiments while the power-law scaling (11) works quite

well. The values of _- and _ averaged over regions where they are approximately

constant are listed in Table 1 and presented in Fig. 7. One can see that /_k does

not depend on Rx and the type of flow at Rx > 3 x 103, and is approximately

equal to 0.22. The exponent [3 in (11) does not reveal any dependence on the type

of flow (measurements by Castaing et at. 1990 in the round jet at R), = 852 and

in the Modane wind tunnel at RA = 2720 are also presented in Fig. 7). However,

this exponent strongly depends on RA, and the dependence may be approximated

as 13 cx R_ 1/3, which is different from the relation /3 oc 1/lnR), suggested by

Castaing et al. (1990).

2.2.$ Measurements of the second-order moments

The measured values of < e_(x) > as well as the local values of scaling exponent

2 >]/d[ln r] are presented in Fig. 8. No region of power-law scaling#_(r) = -d[lg < e_

is seen within the inertial range; i.e.,/Jr(r) decreases monotonically over the range

of r/z/from say 5 to 20,000. Contradiction of this result to all previous studies is
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apparent. No previous papers reported the local values #_(r), but only log-log plots

such as that in Fig. 8. Such plots may be deceptive; a range of slow change in pc(r)

may be erroneously considered as implying #_(r) _ constant.

It was recently suggested by L'vov and Procaccia (1994) that scaling (4) should

be applied to the centered second-order moment, i.e., the relation

< [_r(X)- <c >]>2 o( r -'y', r/<<r <<L (13)

should be used instead of (4). This suggestion is tested in Fig. 9. It is seen that

_,(r) = d[lg < (c_- < _ >)2 >]/d[lnr] does reveal some range of being approxi-

mately constant. The values of _ averaged over these ranges are presented in

Fig. 10. It is seen that % slightly depends on Reynolds number.



278 A. PTaskov_ky

i

0.4

0.3

0.2

0.1 i

i i i i i , ' I

I I I I I I I i

1O4

I-
I
I

'''l .... ''''1

I

lo.,i ,,,i ........ i
10 3 10 4

Rx R_.

FIGURE 7. Averaged values of the exponents _-_ and 3.

/3 cx R_-1/3; o , the present results; zx , Castaing et al. (1990).

corresponds to

10

V

2
V

0.5
'""I ..... '"I ' ''"'"I ' ''"'"I

,,,,,I , ,, ..... I , ,,,,,,,I , ,,,,,,,I

10 102 103 10 4

r/q

_" 0.4

"_, 0.3

0.2

1 0.1

..... I ........ I ........ I ' ''"'"1

.... I ........ I ........ I I , ,,,..1

10 10 2 10 3 104

r/q

FIGURE 8. The second-order moments < ¢_(x) > and the local values of scaling

exponent _u_(r). For symbols see Fig. 2.

2.3 Analysis of the DNS data base

Two DNS of isotropic homogeneous turbulence at Rn = 94 and 168 (Jimenez et

al. 1993) are analyzed. The purpose of this analysis is a comparison of statistical

characteristics of the "true" energy dissipation field ¢(x), Eq. (2), and its one-

dimensional surrogate g(x), Eq. (8). Significance of such a comparison is illustrated

in Fig. 11 where pdd P(¢) of ¢(x) and P(g) of g(x) are presented. One can see a
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qualitative difference of these functions: P(¢) _ 0 as ¢ _ 0 while P(g) _ Po > 0

as g _ 0 (see also Hosokawa and Yamamoto 1991). In other words, we test a

question: what of the results from Sec. 2.2 which are obtained for _(a:) are valid for

the true dissipation ¢(z)? A comparison is executed in the following way. Using

the DNS data base, each parameter is estimated for the true energy dissipation and

one-dimensional surrogate by substituting in the same defining formula either c(x)

or g(z), respectively.
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The correlation functions Re(r) and the local values of scaling exponent #r(r) are

presented in Fig. 12. No clearly defined inertial range is seen, i.e., there is no region

where #_(r) _ constant. This is expected due to relatively low Reynolds number in

the present DNS. In spite of different pdd (Fig. 11), a qualitative behavior of Re(r)

for e(x) and g(x) is quite similar. Hence one can expect that results and conclusions
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(a) Rx = 94, r/r/= 10; (b) Rx = 168, r/r/= 15. See caption of Fig. 11.

of Sec. 2.2.1 are valid for the true energy dissipation field.

Pdd of energy dissipation averaged over a segment r are presented in Fig. 13.

Variation of gr(x) is much larger than that of e_(x): the maxima of P(gr) are shifted

to the smaller amplitudes while the tails of P(g_) at large amplitudes are higher

than those of P(e_). The log-normal model is tested in Fig. 14. The true energy

dissipation field agrees quite well with the model while P(ln g_) reveals significant
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deviations similar to those in Fig. 5. One can suggest that the deviations from the

log-normal model in Fig. 5 would be smaller (or even disappear) if the true energy

dissipation was measured at high Rx.

Eqs. (3) and (11) were tested, and the results are presented in Fig.15 which is

similar to Fig. 6 for experimental data. A qualitative behavior of gin ,, for the one-

dimensional surrogate in the DNS is completely similar to that in the high Reynolds

number experiments. The DNS results for gr do not agree with Eq. (3) at v/r 1

7-20 (this region is expected to model the inertial range) while they agree with

Eq. (11). On the other hand, the true field er(x) is reasonably described by Eq. (3)

in the vicinity of r/rl w, 10, and it does not agree with Eq. (11). Using DNS at
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Rx = 68.1 and 151, Wang et al. (1994) recently found the values of pk _- 0.28 for

the true field er(x), and 0.34 for the surrogate _r(x). In the present DNS the values

of #k(r) for gr are also larger than those for er (Fig. 15). However, our results differ

conceptually from those by Wang et al. (1994). We state that the surrogate field

does not obey Eq. (3) in the vicinity of r/q _ 10-15, and no value of/_k may be

estimated. Perhaps, Wang et al. (1994) would draw the same conclusion if they

used the logarithmic derivatives instead of the log-linear plots of a_n _, "os in r.

2 (Fig. 16) areThe DNS results for < er > also similar to the experimental data

(Figs. 8, 9). A functional behavior of the second-order moment < g_ > in the DNS
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2agrees with Eq. (13) at r/71 _ 10-20 as that in experiments while < e_ > clearly

agrees with Eq. (4).

It follows from the above results that the experimental findings of Sec. 2.2.2 and

2.2.3 may be valid only for (Ou/Ox) 2, and their application to the true dissipation

ficld e(x) is quite questionable. Based on these preliminary results, we cannot draw

any final conclusions. However, two suggestions may be stated. First, any exper-

imental finding obtained for the surrogate g(x) should not be applied to the true

dissipation field before similarity of this result to that for e(x) is proven. Second,

DNS seems to be the most reliable (and perhaps a unique) tool for such a proof.

3. Future plans

The goal remains to understand what characteristics of the energy dissipation field

are adequately represented by the one-dimensional surrogate. To further study this
question, we are going to use the recent DNS data base with resolution 512 s.

The second question may be formulated as follows: what is the minimum set of

terms in Eq. (2) which adequately represents any statistical characteristic of e(x)?

An answer to this question will allow a proper design of the future high Reynolds

number experiments.
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On the dynamics of small-scale
vorticity in isotropic turbulence

By J. Jim_nez I and A. A. Wray 2

1. Motivation

In a previous report (Jim_nez et al. t993, referred from now on as JWSR),

it was shown that the strong vorticity in isotropic turbulence is organized into

tubular vortices ("worms") whose properties were characterized through the use

of full numerical simulations at several Reynolds numbers. That paper should be

consulted for details as well as for the previous history of the subject. At the time

most of the observations were kinematic, and several scaling laws were discovered

for which there was no theoretical explanation. In the meantime, further analysis

of the same fields yielded new information on the generation of the vortices, and it

was realized that even if they have to had to be formed by stretching, they were at

any given moment actually compressed at many points of their axes (Jim_nez and

Wray, 1994). This apparent contradiction was partially explained by postulating

axial inertial waves induced by the nonuniformity of the vortex cores, which helped

to "spread" the axial strain and allowed the vortices to remain compact even if not

uniformly stretched. The existence of such solutions was recently proved numerically

by (Verzicco, Jimdnez & Orlandi 1994). The present report discusses a set of new

numerical simulations of isotropic turbulence, and a re-analysis of the old ones, in

an effort to prove or disprove the presence of these waves in actual turbulent flows

and to understand the dynamics, as oposed to the kinematics, of the vortices.

One set of experiments use hyperviscous dissipation instead of regular viscosity.

Since the strong vortices are known to be dissipative structures with characteris-

tic radii in the range of the near dissipation range of the turbulence cascade, they

can be considered as being forced by inertial range eddies, but to be dominated

by viscous diffusion. The hope was that hyperviscosity would change the diffusion

mechanism without changing the forcing and give us a better insight into the dy-

namics. This strategy was largely successful, but some unexpected consequences of

hyperviscosity were found in the form of a strong bump in the upper inertial range

of the spectrum, spanning at least one and a half decades in wavenumber, and which

seems to be an evolution of the much weaker bump described in some experiments

in real fluids. This bump is discussed below in detail and may be of some practical

relevance since some sub-grid models in LES computations use eddy viscosity laws

that resemble hyperviscosity, and the present result suggests that their effect might

distort the spectrum across a range of scales comparable to that of most practical

LES numerical grids.

1 Also with School of Aeronautics, U. Politdcnica, Madrid

2 NASA Ames Research Center, Moffet Field, Ca. 94035
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Finally, the study of strong vorticity leads directly to the question of intermit-

tency. It appears that at the Reynolds numbers of our flows (Rex < 170), most

of the extended tails in the probability density functions of the velocity gradients

can be associated to the vortex filaments and scale with Reynolds number in the

same way as they do. We show evidence that the volume ratio occupied by the fila-

ments decreases with Rex while the intensity of the individual structures increases.

This raises the question, already posed in JWSR, of their behavior in the infinite

Reynolds number limit. It would appear that the mechanisms described here can

not be extended indefinitely as Rex --_ oc although the limitations of numerical

resolution prevent us from giving a definite answer.

The simulations, both viscous and hyperviscous, are described first. The global

flow statistics, especially those related to intermittency, are described next, followed

by a description of worm properties and a short discussion of the results. The present

is an interim report, and more work is needed, especially from the point of view of

theoretical analysis.

2. Viscous simulations

The viscous simulations used in this report are essentially the same as in JWSR.

The spectral numerical scheme (Rogallo 1981) and other parameters are described

in that paper, which should also be consulted for the detailed definitions of the

different quantities, which generally follow (Batchelor 1953). Some simulations were

continued for a longer time to improve the statistics, and the two lower Reynolds

numbers were repeated at higher resolution, kmaxrl = 4 instead of kmaxr/ = 2, to

check that the scalings reported in JWSRwere not artifacts of the use of a uniform

resolution in Kolmogorov units. No artifacts were found. These new simulations

were also used in a separate study of the effect of resolution on both experiments

and in simulations (Jim6nez 1994b).

Since the time of the previous report, the fields corresponding to the highest

Reynolds number (Rex = 168 on a 5123 grid) became unavailable for further pro-

cessing. To paliate this problem, a new simulation was run on a 3843 grid, resulting

in Rex = 141. All these simulations, including the older ones, are sumarised in

Table 1, which refers only to the numerical resolution kmaxr/= 2.

As in the original study, all simulations were forced to reach a statistically sta-

tionary state with a given energy dissipation, adjusted to achieve a desired value

for kmaxr/. In particular, every Fourier velocity coefficient with a wave number such

that k = Ikl < 2.5 was multiplied at each time step by a common real factor, chosen

so that the extra energy introduced in that way was equal to the desired energy

dissipation.

It was felt that forcing the flow at such low wave numbers could reduce excessively

the statistics of the large scales and perhaps affect the flow. To check that effect,

two simulations were performed in which the same type of forcing was applied to

the spectral shell 3.5 < Ikl < 6.5. In general, few differences were found between

the two types of simulations although the new statistics should clearly be better
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Rex N L, L,/_ L,/_ eL/u '3 t/T -F3

35 64 1.8 2.3 27 1.09 54.2 0.49

63 128 2.2 4.2 65 0.80 9.3 0.50

94 256 2.0 6.3 120 0.72 8.2 0.52

142 384 2.4 9.5 222 0.73 5.9 0.52

168 512 2.4 11.2 286 0.69 5.9 0.52

26 128 0.6 1.7 18 0.96 11.2 0.50

48 256 0.7 3.2 44 0.62 15.1 0.51

TABLE 1. Numerical and flow parameters for the viscous cases analyzed in this

paper, t/T is the total run time in eddy turnover units, F3 is the skewness coefficient,

L is the integral scale, and Lt = ut3/e is the eddy dissipation scale. The last two

cases were forced at higher wavenumbers as explained in text.

than the older ones. Those differences that were found are discussed below in the

corresponding sections, and the flows themselves are documented in Table 1. The

better statistics were compensated by the possibility of reaching only much lower

Reynolds numbers. Fig. 1 presents compensated spectra for the different flows.

3. Hyperviscosity

Hyperviscosity, the use of the iterated Laplacian in place of the usual dissipative

operator, has been used often in the numerical simulation of turbulence in an effort

to obtain longer inertial ranges out of a given resolution. The hope has been that
its use would not affect the inviscid aspects of the turbulent flow although it clearly

changes the characteristics of the dissipative scales. Since the vortices that con-

cern us seem to be dissipative features, hyperviscous simulations were undertaken

in the hope of clarifying their dynamics by changing their behavior. Define the

hyperviscosity exponent a through the momentum equation,

D____uu+ Vp = (-1)_+lvV2Ou (1)
Dt

The regular Navier-Stokes equations correspond to a -- 1. In spectral calculations,

the dissipative term is obtained by multiplying the Fourier coefficients of the velocity

by Ikl 2_, and there is no reason to restrict a to be an integer although the phys-

ical representation of the dissipation operator may be complicated for non-integer

exponents.
The first difficulty in analyzing hyperviscous turbulence simulations is to find

reasonable scaling quantities. Since the inertial cascade mechanism is not expected

to change, the Kolmogorov dimensional arguments should apply, and the inner

microscale should depend only on the viscosity coefficient, v, and of the dissipation,
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which is expressed in terms of the energy spectrum as

, = / k °E(k) dk. (2)

The inertial scaling is

E(k) = v%f(k,),

where

_, = (,,7) '/3, ,7 = (,//,),,(3o-1) (3)

Note that these definitions agree with the usual ones when e = 1, but that v should

not be interpreted as a regular viscosity coefficient, even dimensionally.

There is no unique generalization for the Taylor microscale. In regular turbulence

its most obvious use is in defining the microscale Reynolds number Re_, which is

then related to the ratio of the different length scales as

L,/, = 15 -3/4Rot/2, = 151/4Rcl/2, (4)

where L, = u'3/e. If we take these two relations as defining A and Rex, the result

is

)_ V/_ (L, r/2) 1/3 ReA 15(1-a)/2alut_vu-1)l/_- "_ -= , = - , (5)

which reduces to the usual one for regular viscosity.

The numerical experiments are listed in Table 2. All except one were conducted

at the same numerical resolution, 1283 and kmax_ = 2, and result in roughly similar

ReA. A single case was repeated on a larger grid to check Reynolds number scaling.

All the fields were forced at Ikl < 2.5 in the same way as in the viscous cases. One

of the quantities listed in the table,

e* = e/l,'l/°_ '(3<_-1)/<_

is a generalization of the equation e/vw '2 = 1, which only holds for regular viscosity.

The deviation of this coefficient away from unity measures the failure of the vorticity

magnitude to represent dissipation in hyperviscous flows.

3.1 Numerics

There are special numerical problems associated with high hyperviscous expo-

nents. The principal one is the limitation imposed to the time increment by the

accuracy requirements of the dissipative term. Since most codes implement this

substep by some unconditionally stable implicit scheme, the viscous parameter does

not represent a stability limitation, but unless the time increment is chosen short

enough, the evolution of the velocity due to dissipation will be represented inaccu-

rately, and while the resulting system will usually be equivalent to some dissipative

model, it would not be possible to claim that it represents a hyperviscosity of the
intended order.
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c_ Rex N L_ L,/_ L,/_ eL/u 'a e* t/T -F3

1. 63 128 2.2 4.2 65 0.80 1.00 9.3 0.50

1.25 65 128 2.2 4.3 68 0.69 0.57 3.1 0.50

1.50 64 128 2.2 4.2 66 0.68 0.41 3.1 0.49

2. 68 128 2.4 4.5 73 0.66 0.27 3.4 0.49

2.50 68 128 2.5 4.5 74 0.65 0.21 9.5 0.49

4. 75 128 2.8 5.0 86 0.65 0.15 4.8 0.42

2. 95 256 2.0 6.3 121 0.84 0.28 1.5 0.52

TABLE 2. Numerical and flow parameters for the hyperviscous cases analyzed

in this paper. The case a = 1 is the same one described in Table 1, and is only

included here for comparison. The quantity e* is defined in the text.

Consider a spectral code for the evolution equations (1). The accuracy and sta-

bility of the convective term is controlled by the usual CFL parameter, which is

proportional to

c ~ U'km_xAt, (6)

while that of the hyperviscous term is controlled by

2or= ,,k,..,/xt. (7)

In our code, which uses an integrating factor for the dissipative term (Rogallo 1981),

the modes corresponding to kmax are multiplied every time step by exp (-6), arid

the explicit integrator for the advection term assumes that this factor is close enough

to unity for the accuracy of the nonlinear interactions not to be destroyed during

the step. This requires that _ should not be too large. Other implicit schemes have

different behaviors, but the accuracy requirement for the dissipative term is always

that _5be at most O(1).

The time increment At is usually adjusted by fixing the CFL, and the viscous

parameter has to be measured. In our code, u' is given by the dissipation e and

by the form of the spectrum through the choice of the resolution parameter kmaxq.

Assume that e ~ u_3/L ,-- utako, where k0 is the center of our forcing band. It

follows from our definition of the Kolmogorov scale that

u' ,,, vOl-2_'(koO)-l/3. (8)

When At is obtained using this estimate in the CFL and is then substituted in/_,
we obtain

_/c = const. (km_x_)2_-2/3(k0/k.,_x) '/_ _ 1. (9)

From our observations, the empirical constant is approximately 0.03.
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Fig. 2a displays the hyperviscous dissipation spectra k2_E(k), for various expo-

nents, and Fig. 2b shows the position of the dissipation maximum for the different

cases. It is clear from these figures that hyperviscosity succeeds in separating the

forcing and dissipation ranges, even at moderate resolutions, although it will be

seen below that this does not guarantee an inertial range in the usual sense. It is

also clear that km_x77 should be chosen somewhat larger than unity if the dissipa-

tive range is to be reasonably well represented, making the requirement expressed

in Eq. (9) more restrictive as the hyperviscosity order increases. In practice, for our

choice of kmaxr/ ---- 2 and for k0 = 2, kmax -- 60 - 120 (1283 or 2563 grids), it limits

our simulations to a < 4 - 5.

3.2 The near dissipation spectrum

Compensated three-dimensional spectra for some of the hyperviscous fields are

presented in Fig. 3a. There is no collapse in the dissipative range, and the quali-

tative shape of the spectra changes drastically as a function of the hyperviscosity

exponent although it should be noted that the two spectra corresponding to the

same exponent, a = 2, collapse well. As the exponent increases, a large "bump"

appears in the near-dissipation range that for the highest exponents and at these

low Reynolds numbers, dominates the spectrum. In Fig. 3b, in which the spectrum

is premultiplied by k, the bump is seen to behave approximately as k -1 .

Anomalous bumps in this region of the spectrum have been reported in experi-

mental viscous flows (Mestayer 1982, She & Jackson 1993, Saddoughi &5 Veeravalli

1994), and the k -1 behavior was claimed by the second of these groups. A theo-

retical explanation for this power law, based on the depletion of nonlinearity in the

near dissipation scales, was offered in (Yakhot & Sakharov 1993). An older expla-

nation for the presence of the bump, although not for the power behavior, is that

the outgoing energy cascade is inhibited in the dissipation range since energy has to

move into spectral triads with much smaller amplitudes than those corresponding

to the equilibrium k -5/3 spectrum while the incoming energy is not subject to that
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inhibition. The bump is a consequence of the resulting enery "bottleneck" in the

cross-over region (Falkovieh 1994). The latter author has described the same spec-

tral behavior in wave turbulence (Ryzhenkova & Falkovich 1990) and has remarked

that it would become more pronounced in hyperviscous simulations as the damping

becomes more abrupt. The effect is present in spectral turbulence models and has

been observed in EDQNM based simulations (Mestayer, Chollet _z Lesieur 1983).

Finally, some recent hyperviscous simulations of isotropic turbulence, using a -= 8,

have also reported the presence of a k -1 bump (Borue & Orszag 1994).

Since it is known that the near dissipation region contains strong vortex filaments,

they may also provide an explanation for the k -1 behavior. That randomly oriented

vortex filaments would generate a spectrum with this behavior was first noted by

Townsend (1951) and observed directly in JWSR by computing the spectrum of

a flow in which all the vorticity, except the one contained in the strong filaments,

had been zeroed. Moreover, an (inviscid) infinite vortex filament is an equilibrium

solution of the Euler equation for which, by definition, all the nonlinear interactions

cancel identically, and for which the turbulent cascade is fully absent, even if the

filament itself is usually formed by the cascade mechanism of vortex stretching. In

this sense the three explanations are not necessarily incompatible, and the filament

hypothesis merely points to a possible physical implementation of the two previous
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ideas.

However, it will be shown below that in the course of the present investigation,

we were not able to find significant differences between the structure or frequency

of filaments in viscous and hyperviscous flows, which may explain the presence of

stronger bumps in the latter. As a consequence the filament explanation remains

unlikely. Also, our observations cast doubts on the -1 exponent as a preferred

spectral law.

In Fig. 4 we present transverse compensated spectra from several simulations,

including our highest Reynolds number regular viscosity case, together with a ex-

perimental spectrum from (Saddoughi _ Veeravalli 1994). The bump is clearly seen

in the experimental spectrum and, in retrospect, also in the regular viscous simu-

lation, showing that even the highest Reynolds number computed by us is far from

containing a true inertial range.

Figs. 5a-b display the local logarithmic slope, d(log E)/d(log k), for the different

spectra in the near dissipation region. They also include data from (Saddoughi

8_ Veeravalli 1994) although in this case, to make it comparable to ours, it is in

the form of a three-dimensional spectrum obtained from their data for Ell, using

the assumption of isotropy. Fig. 5a, for the regular viscous cases, reinforces the

conclusion that all our simulations are far from the real inertial range. Fig. 5b, which

contains the hyperviscous cases, shows a steady climb of the least negative slope

with increasing a with no sign of saturating at k -1. Moreover, the two Reynolds

numbers at a -- 2 show the same tendency as the regular viscous cases with the

spectred hump extending further into the low wavenumber range, suggesting that

these simulations are also far from reaching a true inertial range and that the extent

of the bottleneck region is not shortened by the sharpening of the dissipation peak.

4. Velocity gradients

It has been known for a long time that the probability density functions for

velocity differences become increasingly non-Gaussian at short distances, and that

this leads to highly intermittent behavior of the velocity gradients, which becomes

more pronounced at high Reynolds numbers. In JWSRwe presented histograms

for different combinations of gradients (vorticity and total strain magnitudes and

local stretching, a = wSw/w2), which clearly showed this Reynolds number effect.

A compact representation of this departure from Gaussianity is provided by the

high order flatness and skewness F,(() =< (" > / < (2 >,/2, two of which are

given in Fig. 6 for the viscous and hyperviscous cases. In each case the vertical

origin of coordinates has been chosen to coincide with the Gaussian value (F4 = 3,

Fs = 15. The tendency for both flatnesses to grow with Reynolds number is clear,

as is the fact that the simulations forced at intermediate wave numbers do not

differ significantly in this respect from those forced at low wave numbers. The

values for the fourth order flatness of the longitudinal gradients agrees well with

the compilation in (Van Atta _z Antonia 1980) although our experiments cover a

much narrower range of Reynolds numbers than theirs.

The variation of the flatness with the hyperviscosity exponent (Fig. 6b) is more
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surprising. While it seems from table 2 that the equivalent Reynolds number in-

creases slightly with increasing a and while the same conclusion could be reached

from the increasing separation between the integral scales and the dissipation peak

(Fig. 2a), the flatness is seen to decrease with a. The same behavior is observed in

the histograms of almost all the gradient quantities, as can be seen for the vorticity

magnitude in Fig. 7a. The exception is the stretching histogram (Fig. 7b) which

shows a much weaker variation with a, essentially within the statistical uncertainty.

It should be stressed that the variation of the flatness with Rex is similar in

the hyperviscous flows at constant a and in the viscous ones. This is clear from

table 3, which contains flatness for the two Rex available at a -- 2. There is also

a consistent, although much weaker, increase in the skewness, F3, with Rex which

can be seen from tables 1 and 2, and which is also in general agreement with the

data in (Van Atta & Antonia 1980).

5. Worms

An algorithm was developed in JWSR to track individual filaments and to mea-

sure their properties. The same algorithm has been used here to analyze the new

flow fields and to obtain data which may be useful in understanding their dynamics.

The axis of each filament is followed until some arbitrary definition of its end point

is reached and the vortex radius, circulation, peak axial vorticity, and axial stretch-

ing are measured at each point and used to compile statistics over the fraction of
the flow contained in the worms.

The axial stretching is defined as niSijnj, where Sij is the strain tensor and ni

is the unit vector in the direction of the axis. The condition to end a filament was
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Re _, F41 F4, F6t F6,

68 4.5 5.9 49 100

95 4.8 6.5 62 131

TABLE 3. Flatness factor for the two hyperviscous cases with a = 2. Subscript e

refers to longitudinal gradients, t to transverse ones.

described in detail in JWSR but depends essentially on the axial vorticity weakening

below a given level.

The simplest statistic is the mean value of a given property over all the axial

points of all the worms detected in a given flow. There are two groups of properties.

Since filaments have to be formed by stretching of preexisting vorticity, the axial

stretching can be considered as the driving force in the formation of the worms

while all the other properties can be considered as the results of that forcing.

Both groups behave differently. The mean value of axial stretching, averaged

over the axes of the worms, is shown in Fig. 8 normalized with the rms value

of the vorticity over the whole flow, which is the natural scaling for the velocity

gradients in the bulk of the flow. Except for a slight tendency to grow with Re,x,

the stretching scales well with w' although the proportionality constant depends on

the hyperviscosity exponent. It was shown in JWSR that the average stretching,

conditioned on a given vorticity, depends only weakly on the conditioning value,

and this was interpreted as an indication that the filament did not stretch itself

appreciably. The present result reinforced that conclusion since it will be seen

below that the mean vorticity in the worms is a fairly strong function of Re,x while

we have shown that the stretching is not.

This is further confirmed by Figs. 9 and 10, which show correlation functions and

lengths for the axial distribution of the stretching along worms. The correlation

length is a useful indication of the typical length scale of a given property, and we

use it here as a less subjective indication of length than the one used in JWSR,

which was based on the total length of the detected worms.

Consider a quantity, _(s), given as a function of arc length along the axis and

assumed to have zero mean value, and define the correlation

R(s) =< _(s')C(s'+ s) > / < _2 >, (I0)

where the average is taken over the axial position s'. This function has zero integral

and R(0) = 1. It will first become negative at some point s = So (Fig. 9). We define

the correlation length as

= R(s) s. (11)
The same definition can be used on properties which are defined at all points in

the flow for which the arc length s has to be substituted by a coordinate distance



Small-scale vorticity in isotropic turbulence 301

t_

0.20

0.18

0.16-

0.14"

0.12

0.10

........... .-O

&

! t i i

25 50 75 100 125

Rex

150

FIGURE 8. Average axial stretching along filament axes.

a=2; " : at=4.

: viscous flows; o :

.-g-

1.0

0.5-

0.0"

-0.5 i !

0 50 100 150

FIGURE 9. Correlation functions of axial stretching, against of the arc length

along the worm axes. -- : a = 1, Rex = 63; ........ : Rex = 142; .... :
a = 2, Re x = 68; n-m : a=4.



302 J. Jimdnez 8J A. A. Wray

lO"

°.......*--°""
..°.*

....°°.--""

.°..°.....°"*"°*""

.°°°"

o..A .................................. o

............................ o
f

a) b)

0o _ 5'0 7_ 6o 65 15o 25 5b 7'5 ,60 l_ lso

Rex Re_

FIGURE 10. Axial correlation length of the stretching along the filament axes.

(a) Normalized with the Kolmogorov length. (b) Normalized with the correlation

length of longitudinal gradients over the whole flow. Symbols as in Fig. 8. The

dashed line in (a) is the Taylor microscale, for comparison.

(e.g. x). This global correlation function can be computed as the inverse Fourier

transform of the one-dimensional spectrum of the quantity (Batchelor 1953). From

that, and since the power spectrum of the velocity gradients has its maximum at

the near disipation region, it follows that the correlation lengths for gradients when

averaged over the whole flow should scale with r/.

Fig. 10a shows the correlation length for the stretching along the worms, fa, which

scales well with 7?, although the scaling constant depends again on the hyperviscosity

exponent. This is not surprising since we have shown that the shape of the near

dissipation spectra depends on a and so does presumably the relation between the

size of the gradient eddies and 17. In Fig. 10b we show eo normalized with the

correlation length of the longitudinal gradients Ou/Ox taken over the whole flow.

Most of the dependence with a disappears, and the ratio is close to one, showing

once again that the stretching along the worms is essentially indistinguishable from

that at a generic point in the flow and that self stretching is not important.

It is therefore surprising that the axial correlation lengths of all the resulting

worm properties are much larger than 7? and scale apparently on the integral scale

of the flow (Fig. 11). This generalizes the observation in JWSR, which has been

made by all the investigators that have studied these filaments, that their length

is of the order of the integral scale. While the original observations were made on

the basis of arbitrary visualization or termination criteria, the present result is a

more objective characterization of the same phenomenon. In these last two figures

we have included a curve for the Taylor microscale A which is defined by Eq. (4).

This is done mainly for comparison, but also because this scale has been suggested

often as a natural scale for the turbulent eddies. In particular, it was observed

in JWSR that if the characteristic stretching along worms was of O(w _) and since

it is known that the velocity differences in a turbulent flow scale with u _ without

strong Reynolds number effects, the largest possible length scale for the stretching

was O(w'/u') = O(A). It was felt at the time that this contradicted the observation



Small-scale vorticity in isotropic turbulence 303

0.5"

0,4"

0.3-

0.2-

0.1

.-."....
." /. ::

..." I" _,. ".

i=1 .... . .................

O,O i ! I !

25 50 75 100 125 150

Rex

FIGURE 11. Axial correlation lengths along worms axes, normalized of the dissi-

pation length Le. _ and o : axial vorticity at axis; ........ and ×: circulation;
----- and a : radius. Lines without symbols are viscous simulations. Lines with

symbols are are _ = 2. Isolated symbols are c_ = 4.

0
l0 :

-1
10_

-2.
10

-3
i

10 -6 -4

s::,I Y'_X
/i7

...//7 ....
I .'_/ \"_
:
i 1i r.,

/ ",:t,
' '; _e_V"" .4

-2 0 2 4 6

a/<a>

FIGURE 12. Probability density function for the stretching a along the axes of the

worms. Symbols as in Fig. 9. All histograms are normalized to unit mean value.



304 J. Jimdnez (_ A. A. Wray

O ........................................ 0

a) b)
o

25 5'0 7'5 100 125 150 25 5'0 7'5 100 1_5 150

Re_, Rex

FIGUaE 13. Mean worm radius. (a) Normalized with the Kolmogorov length. (b)

Normalized with Burgers' radius for the average axial strain. Symbols as in Fig. 8.

that the length of the worms was O(L_) since it was assumed that vortices could

only survive if stretched on the average. This proved to be false, and it was shown

in (Jim_nez & Wray 1994) that the strain along the worms is compressive over a

large fraction of the axis (Fig. 12). Verzicco, Jim_nez and Orlandi (1994) have

shown recently by direct computation that vortices subject to spatially nonuniform

axial strain, even one with zero axial average stretching, can reach a steady state
thanks to the presence of axial inertial waves which "smooth" the strain over the

compressive parts.

It is still interesting to note that although the L_ scaling seems to be a better

representation of the data in Fig. 11, especially at the higher Rex, a scaling of a

few Taylor microscales is not completely incompatible with them.

In (Jim_nez & Wray 1994) the equivalent to Fig. 12 was plotted together with

probability density functions of the same quantity computed over the whole flow

field. The differences between the two were shown to be small, stressing again that
the forcing of the filaments is not different from that of the rest of the flow. Note

however that the collapse of the stretching pdf's over the full field for different values

of a (Fig. 7b) is better than those of the same quantity over the worms (Fig. 12),
suggesting either that there is a selection mechanism for the location of worms in

terms of stretching or a dynamical feedback from the worms into the structure of

the stretching itself. The same conclusion can be drawn from the dependence of the

average worm stretching on a, shown in Fig. 10.

The average radius of the worms is given in Fig. 13a. It scales with the Kol-

mogorov scale although there is again a different proportionality constant for dif-

ferent hyperviscosity exponents. A better collapse is possible if we assume that the

filaments are Burgers' vortices driven by the mean axial strain. For viscous flows,

the Burgers' radius due to a strain to' is 2(v/wt)]/_ = 2r/, which agrees with the

approximate Kolmogorov scaling for these flows in Fig. 13a.

Hyperviscous Burgers' vortices were computed in (Jim_nez 1994a). Although

their outer tails are different from the viscous ones and actually change sign before
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they settle to zero, their cores are approximately Gaussian (Fig. 14a) with a 1/e

radius which can be approximated for o_ <_ 5 by

Rb = (2.022 - 0.0843c_ + 0.0688a _ - O.O086aa)(u/a) 1/2_, (12)

where the coefficient is the result of a polynomial fit to the solution of an ordinary

differential equation. When this formula is used to compute the Burgers' radius as-

sociated to the measured mean stretching from Fig. 8, the results are the normalized

radii in Fig. 13b, in which the effect of hyperviscosity is essentially absent.

Fig. 14.b contains vorticity profiles averaged along the axes of all the worms in

a given flow. The profiles are also approximately Gaussian, and it is interesting

to note that the more hyperviscous profiles show signs of negative vorticity at the

edges, which may be a reflection of the oscillations in the tails of the theoretical
solutions.

Full probability density functions for the local radius and for the radius divided

by the local Burgers' radius are given in Fig. 15. To avoid effects related to the

variations of the mean values, the averages of all those distributions are adjusted to

unity. The collapse of the Burgers' plot is excellent, but there is some differences

between the pdf's of the raw radii in viscous and in hyperviscous flows, probably

reflecting the differences in the structure of the local stretching that were discussed
above.

The mean values of the vorticity at the axes of the worms are given in Fig. 16a.
n 1[2

It was suggested in JWSR that w/w t increases with Reynolds number as .aex and

that same normalization is used in the figure. Except for the case at Rea = 48

in which the forcing was done at higher wave numbers, it seems to work correctly.

The intermediate forcing seems to work differently from all the other flows for all

quantities which scale with the integral length as can also be observed in Fig. 11.

The large scales are different from those of the flows forced at lower wave numbers,

and it appears that the axial distribution of vorticity in the worms is controlled

by them. A line corresponding to w ,-_ w' is also included in the figure and is

incompatible with the data. In Fig. 16b we have represented the mean value of the

vortex circulation, normalized with the mean vorticity and radius for each flow. It

clusters around unity in what is essentially a consistency check for the averages,

but which also reflects that the statistical distribution of vorticity and radius are

relatively independent of the dissipation model. A few representative pdf's are

given in Fig. 17, normalized to unit mean. The sharp cut-off of the vorticity pdf

is artificial. The tracking algorithm terminates a worm whenever its axial vorticity
falls below w I.

It is finally interesting to enquire which is the relative importance of worms

with respect to the bulk of the flow. This is largely a matter of definition, but a

volume fraction can be defined by taking the mean vorticity detected at the axes

by our algorithm and defining as worms all the points whose vorticity magnitude is

above that threshold. This, although arbitrary, seems justified since it appears from

Fig. 17a that our threshold is below the maximum of the distribution and is probably

not distorting the mean value too much. When this is done, a volume fraction can
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b)

Rex

(a) Mean vorticity along worm axes, normalized with JRelx/2. Sym-FIGURE 16.

bols as in Fig. 8. Dashed line corresponds to a) .v j, without Reynolds number

dependence. (b) Mean value of filament circulation, normalized with mean vorticity

and vortex radius, < 7 >/Tr < _ >< r >2.

be read from the vorticity histogram of the flow (Fig. 7a) and is represented in

Fig. 18. The volume occupied by the worms decreases with Reynolds number as
n 1/2

Re-_:. Since their characteristic vorticity increases only with ztex , this implies that

not only the volume, but also the enstrophy contained in them decreases rapidly as

the Reynolds number increases.

6. Conclusions and future work

We have shown that the vortex strong filaments in isotropic turbulence have

lengths and axial correlation lengths of the order of the integral scale of the flow,

even if the stretching along their axes has a spatial scale of the order of the Kol-

mogorov length and seems essentially indistinguishable from the strain in the bulk

of the flow. We have also shown that the average radius of the vortices is very

close to the Burgers' radius corresponding to the mean axial strain, even if large

segments of the axes are actually under compression. We have suggested that this is

accomplished through the action of axial waves, which distribute the effective strain

along the axes. All these observations hold for hyperviscous flows with the obvious
modifications needed to accommodate the different core structure of the vortices.

We can think of few mechanisms to generate coherent vortices of such lengths

in turbulent flows. The obvious one, in which vortices form by roll-up of the large

scale vorticity layers in between large eddies, is unlikely because it can readily be

shown that the large-scale stretching is at most able to collapse vortices to radii

of the order of the Taylor microscale, and it is difficult to think of a way in which

straining motions of the observed scales, r/, could further collapse these cores, much

thicker than themselves, into more compact cores.

Another possibility, and the one that we favor at the moment, is a mechanism

by which short vortex "sticks" form individually and are later patched by the axial

waves into longer units. This mechanism has been demonstrated in simpler situa-

tions in (Verzicco, Jim_nez and Orlandi 1994). Note that from Figs. 10 and 11, the
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elongation of the worms, g,,/< r >, although large and increasing with Rex, never

exceeds 10-20 in our range of Reynolds numbers.

A remaining problem is the growth of the circulation of the vortices with Rex.

It was noted in JWSR that this implies an increase of the Reynolds number of

the azymuthal motion of the individual structures and that at some point those

structures should become unstable. We still feel that way, but we have no way of

predicting the conditions for this instability.

We have also shown that the volume fraction occupied by worms decreases as

Re-_ 2. This is somewhat misleading and should be understood in relation to the

decrease of their radii. If we remember that r/,_ Re-_ 3/2, it follows that the accu-

mulated length of the structures grows like L_Rex, and their total "number" per

unit volume, as Rex. This is difficult to reconcile with their increasing instability

as their Reynolds number increases. It has been proposed recently that an internal
structural transition might exist in turbulence at Rex _ 103, resulting in a decrease

of intermittency (Tabeling et al. 1994). If this is confirmed, it could possibly resolve

the present dilemma.

Finally, we have described the effect of hyperviscosity in isotropic simulations.

The resulting spectra are dominated by large humps in the near dissipation region,
which extend to the last wave number decade of the inertial range. They seem to

be generated by the energy "bottleneck" produced by the inhibition of the energy

cascade by viscosity.
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Forced free-shear layer measurements

By R. L. LeBoeuf

Detailed three-dimensional three-component phase averaged measurements of the

spanwise and streamwise vorticity formation and evolution in acoustically forced

plane free-shear flows have been obtained. For the first time, phase-averaged mea-
surements of all three velocity components have been obtained in both a mixing

layer and a wake on three-dimensional grids, yielding the spanwise and streamwise

vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency

forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical

structures in a plane mixing layer. The objective of this study was to measure the
near-field vortical structure morphology in a mixing layer with "natural" laminar

initial boundary layers. For the second experiment the second and third subharmon-
ics of the fundamental roll-up frequency were added to the previous two-frequency

forcing in order to phase-lock the roll-up and first three pairings of the spanwise

rollers in the mixing layer. The objective of this study was to determine the de-

tails of spanwise scale changes observed in previous time-averaged measurements
and flow visualization of unforced mixing layers. For the final experiment, single-

frequency forcing was used to phase-lock the Karman vortex street in a plane wake

developing from nominally two-dimensional laminar initial boundary layers. The

objective of this study was to compare measurements of the three-dimensional struc-

ture in a wake developing from "natural" initial boundary layers to existing models
of wake vortical structure.

Part 1: Forced mixing layers

1. Motivation and objectives

The three-dimensional structure of plane transitioning mixing layers has been

the subject of many experimental and computational studies since the early sev-
enties when it was realized that, in addition to spanwise vortices ("rollers") which
arise as a result of the Kelvin-Helmholtz instability, a secondary structure was also

generated. The secondary structure took the form of "spatially-stationary" stream-
wise vortices which were soon identified in flow visualization studies and in velocity

measurements. These earlier results showed that the streamwise structures ("ribs")

first formed in the braid region, a region connecting adjacent spanwise vortices, and
that their locations were related to the strength and position of (weak) incoming

disturbances.

The presence and role of these "naturally-occurring" streamwise structures were
recently investigated through detailed time-averaged measurements (Bell and Mehta

1992). A plane, two-stream mixing layer was generated with nominally two-
dimensional laminar initial boundary layers. The measurements indicated that
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small spanwise disturbances originating upstream in the boundary layer flow were

amplified, leading to the formation of spatially-stationary streamwise vortices.

Based on mean velocity measurements in the near-field region, it was concluded

that this amplification occurred just downstream of the first spanwise vortex roll-

up. The mean vorticity first appeared in "clusters" containing vorticity of both

signs, but further downstream, it "re-aligned" to form counter-rotating pairs in a

nominally linear arrangement. The vortex structure was found to grow in size with

downstream distance, the spanwise wavelength associated with them increasing in a

stepwise fashion. In contrast to some other experimental results, however, a jump in

spanwise wavelength was not observed at every estimated roller pairing location and

the spanwise wavelength remained constant over fairly large streamwise distances.

Since the jumps in spanwise scale were correlated with local increases in the average

streamwise circulation per vortex, Bell & Mehta (1992) suggested that at least one

mechanism for the increase in spanwise scale was amalgamation of vortices of the

same sign.

Although the secondary structure in a plane mixing layer has already received

considerable attention, all issues regarding the three-dimensional structure in "nat-

ural" mixing layers have not yet been addressed. In terms of the computations,

limits imposed by boundary conditions and the expense associated with grid size

and computation time make it difficult to evaluate the structure of a (natural)

spatially-developing mixing layer. Of course, details and interactions of the sec-

ondary structure are lost through time-averaging while the use of partial vorticity

and Taylor's hypothesis, which were commonly used to interpret previous mea-

surements, obviously add to the uncertainty in experimental results. In fact, the

measurements described in this report were used to show that the use of Taylor's

hypothesis introduces large errors both in the shapes and levels of the vorticity con-

tours, especially in the roller pairing regions (LeBoeuf & Mehta 1994a). The issue

of spanwise scale change of the streamwise vortical structures in mixing layers has

also already received considerable attention, but it is still not clear when and how

such a scale change will occur in a "natural" mixing layer. In particular, details

of the streamwise structure scale change have not been studied quantitatively in

experiments.

The main objective of the first study described in this report was to investigate

the development of three-dimensionality and evolution through a spanwise roller

pairing in a forced plane two-stream mixing layer developing from "natural" laminar

boundary layers. Acoustic forcing was used to phase-lock the initial roll-up and

first-pairing, which would otherwise occur randomly in an unforced mixing layer.

Phase-averaged measurements were then used to quantify the resulting vorticity

development and interaction (LeBoeuf &: Mehta 1994b). Since a spanwise scale

change was not observed through the first pairing, a second study was conducted in

which acoustic forcing was used to phase-lock the formation and first three pairings

of the spanwise rollers. Phase-averaged vorticity measurements were then used to

identify the regions and details of the spanwise scale changes. The mechanisms

responsible for the scale changes in this "natural" mixing layer have also been
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identified (LeBoeuf & Mehta 1994c).

2. Accomplishments

2.1 The ezperiment

The experimental apparatus was essentially the same as that described in LeBoeuf

(1993) and has been further described in detail in LeBoeuf & Mehta (1994b); only

a brief description is therefore given here. The experiments were conducted in a

mixing layer wind tunnel with the two free-stream velocities set to 12 m/s and

7.2 m/s. The boundary layers on the splitter plate were laminar and nominally

two-dimensional with these operating velocities. Velocity measurements were made

using a single cross-wire probe which was rotated in order to obtain data in two-

coordinate planes (uv and uw).

The forcing signals used to obtain the results described in this report consisted
of the sum of a sine wave at the fundamental "most-probable" roll-up frequency

(500 Hz, obtained from centerline spectra in the unforced layer) and its first sub-

harmonic (.950 Hz). Two additional subharmonics (125 Hz and 62.5 Hz) were added

for the second (spanwise scale change) study. The forcing signal relative phase an-

gles were optimized in order to induce rolling-type interactions for all pairings. The

individual sine waves were combined using a simple summing circuit and output via

an audio amplifier to speakers which were placed directly across from the splitter

plate trailing edge at a side-wall slot location. The amplitude (volume) of the out-

put signal from the amplifier was set to the absolute minimum level that still gave

adequate coherence in the phase-locking.

For the phase-averages obtained in the first study, 768 ensembles of 16 samples

per cycle were measured. The measurement grid consisted of 55 uniformly spaced

X locations in the range 1 to 28 cm and _'20uniformly spaced Y locations distributed

over a linearly increasing range of -1 to 1 cm at X = 1 cm to -9..5 to 2.5 cm at

X = 28 cm. In the spanwise direction, the three-dimensional grid ranged from Z

= -5 to 5 cm with 41 uniformly spaced locations. For the phase-averages obtained

in the second study, 768 ensembles of 32 samples per cycle were measured. The

measurement grid consisted of 155 uniformly spaced X locations in the range 1 to

78 cm and 11 uniformly spaced Y locations distributed over a linearly increasing

range of - to 1 cm at X = 1 cm to -6.2 to 4.4 cm at X = 78 cm. In the spanwise

direction, the three-dimensional grid ranged from Z = 0 to 5 cm with 21 uniformly

spaced locations.

2.2 Results and discussion

2.2.1 Two-frequency forcing: initial roll-up and first pairing

The streamwise evolution of spanwise vorticity along the mixing layer centerline

(Z = 0) is depicted in Figs. 1(a-d) for four phases (or times). In effect, every fourth

phase out of the 16 measured phases per subharmonic cycle is presented. The

evolution and pairing of sets of primary rollers can be easily tracked through the

four phases shown. The initial spanwise vortex roll-up occurs at X _ 5 cm. Clearly,

signs of subharmonic forcing are present early in the mixing layer development
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FIGURE 1. Centerplane phase-averaged spanwise vorticity (< f/z > /Uo, cm -1)

contours at various phases. Lowest level = -0.25, increment = -0.5. (a) phase 1;

(b) phase 5; (c) phase 9; (d) phase 13.

since distinguishable pairs of primary rollers are discernable from the onset of their

development. Spanwise vortices of each pair start to move closer together between

X _ 10 and 15 cm, begin to corotate at X _ 15 cm, and complete the first pairing

by X ._ 25 cm. The peak phase-averaged spanwise vorticity levels drop by an order
of magnitude during the pairing process.

Details of the vortical structures can be examined in detail by using two-

dimensional "cuts" through the three-dimensional data. To maintain figure leg-

ibility, the figures and discussion thereof was divided into two parts: the initial
spanwise vortex roll-up region and the pairing region. In the initial roll-up region,

spanwise vorticity contours in XY-planes which intersect ribs (Figs. 2a and c) and
those between ribs (e.g. Fig. 2b) appear quite similar both in terms of qualitative

(structural) features and vorticity levels. The cups of intense spanwise vorticity

observed by Buell & Mansour (1989a) and Rogers & Moser (1992) in their direct

numerical simulation studies were not found in the present investigation. The forma-

tion of cups was attributed to the effects of alternating stretching and compression
of the primary rollers by collapsed rib vortices.

The XY-planes of streamwise vorticity through the ribs and between them, on
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FIGURE 2. Phase-averaged spanwise vorticity (< f/z > /Uo, cm -1) contours at

phase 1. Lowest level = -0.25, increment = -0.75. (a) RP through positive rib, Z

= 0.25 cm; (b) BP, Z = 1.25 cm; (c) RP through negative rib, Z = 2 cm.

the other hand, certainly show some obvious differences. In addition to the rib

vortices, opposite-_ign streamwise vorticity peaks appear within the spanwise roller

core in planes intersecting the ribs (Figs. 3a and c). This effect is attributable to

(streamwise) kinking of the spanwise roller, and its appearance here is consistent
with the simulation results of Buell & Mansour (1989a) and Rogers &: Moser (1992)

and with the measurements of Lasheras & Choi (1988), Tung (1992) and Nygaard

& Glezer (1991). This production of opposite-signed streamwise vorticity has been

explained in vortex stretching terms in the streamwise vorticity equation by Buell

(1991) and Rogers &: Moser (1991). Since the deflection of the spanwise roller
reaches a maximum and therefore has only a spanwise component between the ribs

(Z = 1.25 cm), its contribution is absent in that plane (Fig. 3 b). The arrangement
of rib vortices and streamwise vorticity within the spanwise roller yields a three-tier

arrangement of streamwise vorticity in cross-stream (YZ)-planes which intersect

the primary rollers (Fig. 4a), whereas only the rib vortices are apparent in the

cross-stream planes which intersect the braid regions (Fig. 4b).

In the pairing region, evolution of the streamwise vorticity was first examined

through cross-stream (YZ-plane) cuts. Figs. 5(a) and (b) correspond to planes
which intersect the primary (paired) rollers at X -- 22 and 26 cm, respectively. It

is evident from Fig. 1 that pairing is occurring between approximately X -- 17 cm

and X = 24 cm. A comparison of Figs. 5(a) and (b) indicates that reorganization
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FIGURE 3. Phase-averaged streamwise vorticity (< fl_ >/Uo, cm -1) contours at
phase 1. Negative ........ , positive _ , lowest level = 5=0.2, increment = +0.3.

(a) RP through positive rib, Z = 0.25 cm; (b) BP, Z = 1.25 cm; (c) RP through
negative rib, Z = 2 cm.

(interaction) of the secondary vorticity continues to take place even towards the final

stages of pairing. In particular, it appears that the streamwise vorticity arrangement

is tending toward the three-tier arrangement within a cycle after pairing occurs
(Fig. 5b).

Figs. 6(a) and (b) correspond to YZ-plaz_es which intersect the braid regions at
X = 20.5 and 23.5 cm, respectively. In contrast to the near-field downstream of

X _ 20 cm, the peak streamwise vorticity levels become higher in the braid region.
Most importantly, the spanwise scale or spacing of the rib vortices has nat increased

through this first pairing. Thus, compared to the near-field value, the spanwise to
streamwise wavelength ratio was decreased from about 1.3 to 0.65.

In the pairing and post-pairing stages of the mixing layer, exemplary XY-plane
cuts of spanwise and streamwise vorticity through ribs and between ribs are shown

in Figs. 7 and 8, respectively. As in the upstream domain, cuts showing spanwise

vorticity contours through the ribs and between them appear very similar and, even

in this region, there are no signs of the cups of relatively strong spanwise vorticity

reported for the simulation results (Buell & Mansour 1989a; Rogers & Moser 1992).

As expected, the streamwise vorticity is significantly weaker in planes between

ribs compared to those through the ribs. The two rollers undergoing pairing clearly
exhibit the three-tier distribution as they start to rotate about each other. As
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FIGURE 4. Cross-stream plane phase-averaged streamwise vorticity (< f/x >/Uo,

cm -1) contours at phase 1. Negative ........ , positive _ , lowest level = -t-0.2,

increment = +0.2. (a) X = 8 cm; (b) X = 5.5 cm.

they pair, the two regions of spanwise roller core vorticity eventually coalesce, thus

forming the contribution from the new core. In following the evolution of the

perishing braid regions, the rib vorticity in between the two pairing rollers seemed

to "disappear". Simulation results suggest that this vorticity is destroyed by intense

vortex stretching in this region (Moser & Rogers 1993).

Note that once the pairing process is complete (X _ 25 cm), the streamwise

vorticity of the rib vortices is substantially higher than that due to kinking of the

primary rollers. In addition, the rib contribution to the streamwise vorticity is

higher in the braid than it is in the primary roller YZ-planes. This is in sharp

contrast to the initial roll-up region, where the streamwise vorticity levels in the

primary roller cores due to their kinking are comparable to those of the rib contribu-

tion, which in turn is higher in the rollers compared to its magnitude in the braids.

The same trends were apparent in the experimental results of Tung (1992) and in

the temporal simulation results of Moser & Rogers (1993). Decreased kinking of the

rollers is at least partly responsible for this observed effect since the paired struc-

ture is more two-dimensional than the pre-paired rollers. On examining XY-plane

cuts in the region surrounding the ribs, it was found that the ribs are still wrapped

around the rollers, but the ends are skewed in the spanwise direction, thus reducing

their streamwise vorticity contribution in YZ-planes which intersect the primary

rollers.

The phase-averaged vorticity measurements confirm that relatively strong stream-

wise vorticity appears in mixing layers as a result of an amplification of small in-

coming disturbances -- it is not just directly fed-in from the boundary layers. The

streamwise vorticity is first observed in the form of ribs just upstream of where the
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FIGURE 5. Cross-stream plane phase-averaged streamwise vorticity (< f_x >/Uo,

cm -l ) contours at phase 1 through UPs. Negative ........ , positive- , lowest

level = +0.075, increment = +0.15. (a) X = 22 cm; (b) X = 26 era.

first spanwise vortex is rolling-up. At the same time, the first spanwise roller be-

comes kinked, thus also contributing to the streamwise vorticity. As a result, cross-

stream cuts through the braid-regions show the familiar row of counter-rotating

streamwise vortex pairs while those through the spanwise rollers exhibit a three-tier

distribution consisting of the rib vortices aligned vertically with an opposite-signed

contribution from the roller between them. This type of behavior and distribu-

tion are in agreement with previous observations in experiments (Tung 1992) and

simulations (Buell & Mansour 1989a; Rogers & Moser 1992).

Because of the relatively strong contribution of the kinked rollers and the fact that

the rib vortices are more aligned with the mean flow around the rollers, the highest

levels of phase-averaged streamwise vorticity and circulation were observed in the

spanwise vortex cores in the near-field region. The strong kinking of the spanwise

rollers by the rib vortices was also observed in numerical simulations (Buell &

Mansour 1989a; Rogers & Moser 1992). However, cups of relatively strong spanwise

vortieity (also a result of the rib induced effects) reported for the simulation results
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FIGURE 6. Cross-stream plane phase-averaged streamwise vorticity (< i2x >/Uo,

crn -1 ) contours at phase 1 through MPs. Negative ........ , positive -- , lowest

level = +0.075, increment = +0.15. (a) X = 20.5 cm; (b) X = 23.5 era.

were not observed in the present measurements. This is particularly surprising since

the initial rib circulation in the present experiments is comparable to that used in

the temporal simulations of Rogers & Moser (1992).

The morphology of the surviving braid region rib vortices was not significantly

affected by the spanwise vortex pairing. In particular, their spanwise spacing did

not increase after the pairing. This result is consistent with previous time-averaged

measurements (Bell & Mehta 1992) which showed that the first increase in spac-

ing did not occur until X _ 50 cm, well downstream of the present measurement

domain and after an estimated two spanwise vortex pairings had occurred. It also

supports the findings of Rogers & Moser (1993), who suggested that the details of

the spanwise scale change are dependent on the nature of the initial disturbance

environment. The main effect noted in the post-pairing region is that the levels of

streamwise vorticity in the roller core planes are reduced such that the highest levels

are now found in the braid region. The smaller relative contribution due to kinking

of the spanwise rollers is related to both, a reduction in roller kinking and a faster
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= 0.25 cm; (b) BP, Z = 1 cm; (c) RP through negative rib, Z = 1.75 cm.

rate of decay of the spanwise vorticity compared to that of the streamwise vorticity.

The ribs make a smaller contribution in the roller planes because its ends are tilted

in the spanwise direction. This change in the relative contributions is the reason

why in the time-averaged measurements, the three-tier distribution observed in the

near-field region soon "re-aligned" into a single row of mean streamwise vorticity

(Bell & Mehta 1992).



Shearlayer measurements 323

2.0

q

0.0

-2.0 i(al l , ' t ,

2.0

0.0

-2.0

2.0

0.0

-2.0

=: ;:::;i

(c) , , , i I

15.0 17.0 !9.0 21.0 23.0 25.0 27.0

X (cm)

FIGURE 8. Phase-averaged streamwise vorticity (< _ > /Uo, cm -_) contours

at phase 1. Negative ........ , positive- , lowest level = -t-0.075, increment =

4-0.15. (a) RP through positive rib, Z = 0.25 cm; (b) BP, Z = 1 cm; (c) RP through

negative rib, Z = 1.75 cm.

The present results clearly show that a plane mixing layer originating from lami-

nar boundary layers will develop a three-dimensional structure in the form of stream-

wise vortieity as soon as the Kelvin-Helmholtz instability generates spanwise vortex

rollers. Although in practice the details of the streamwise vortical structures will

be facility dependent, they will generally appear in the form of an array of counter-

rotating vortex pairs. The present data are consistent with existing models of the
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secondary structure: rib vortices are formed in the braid region which wrap around

the spanwise rollers (from the bottom of one roller to the top of the next). The

streamwise vorticity and its associated effects on the mixing layer properties decay
slowly with streamwise distance. This secondary structure therefore forms an in-

tegral and important part of the structural morphology of a transitioning mixing
layer.

2.2.1 Four-frequency forcing: measurements of a spanwi_e 3cale change

The streamwise evolution of spanwise vorticity (< Qz > /Uo, cm -1) along the

mixing layer centerline (Z = 0) is depicted in Figs. 9(a-d) for four phases (or times).

In effect, every eighth phase out of the 32 measured phases per lowest (third)

subharmonic cycle is presented. The evolution and pairings of sets of primary

rollers can be easily tracked through the four phases shown. The initial spanwise
vortex roll-up occurs at X _ 5 cm and the spanwise rollers are shed with an initial

streamwise wavelength of about 1.75 cm. Clearly, signs of subharmonic forcing are

present early in the mixing layer development since distinguishable sets of primary

rollers are discernable at the onset of their development. Spanwise vortices of each

pair start to move closer together between X _ 10 and 15 cm, begin to corotate

between X _ 15 and 20 cm, and complete the first pairing by X _ 25 cm. The

second pairing is initiated immediately after the first pairing is complete, beginning

between X ,_ 25 and 30 cm and ending at X _ 50 cm. The third pairing, which
immediately follows, remains in progress up to the end of the measurement domain

at X = 78 cm. The peak phase-averaged spanwise vorticity levels drop from 4 cm -1

to 1 cm -1 during the first pairing, down to 0.5 cm -1 during the second pairing, and

finally down to 0.4 cm -1 during the third pairing.

Since the objective of the present study was to investigate spanwise scale changes

associated with the rib structures, the spatial evolution of surviving rib structures

was observed as they evolved through the three spanwise roller pairings. This is

achieved by marching in X and phase at the same time. With 32 phases per

third subharmonic forcing cycle (1/62.5 Hz -- 0.016 seconds duration), this gives a

streamwise evolution of 0.48 cm per phase, based on an average convection velocity,

(U1 + U2)/2 = 9.6 m/s. Of course, as adjacent rollers pair, the braid region between

them is engulfed into the new roller. Therefore, the so-called "surviving" braid

region was chosen for examination of its streamwise evolution through the three

roller pairings. The surviving braid region selected for the present scrutiny is marked

by the first vertical line in Fig. l(a). The location of that particular surviving braid

region can then be followed by tracking the streamwise displacement of the vertical

line through the four phases. Of course, to continue tracking the surviving braid

region beyond the location indicated by a line in Fig. 9(d), it is necessary to go back

to Fig. 9(a) and follow the next downstream location indicated, and so on.

In order to investigate the spanwise scale of the rib structures, cross-stream (YZ)

plane cuts through the selected surviving braid region are presented in Figs. 10(a-h)

as this region evolves through the first, second, and third primary roller pairings.

At X = 7 cm (Fig. 10a), approximately two pairs of streamwise vortex pairs are

apparent, with the stronger pair on the left (0 < Z < 2.5 cm) and a weaker, less
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FIGUaE 9. Centerplane phase-averaged spanwise vorticity (< f_z > /Uo, cm -1)

contours at various phases. Vertical lines mark the location of the surviving braid

region tracked in Fig. 2. Lowest contour level = -0.113, increment = -0.1. (a)

phase 1; (b) phase 9; (c) phase 17; (d) phase 25.

organized one on the right (2.5 < Z < 5 cm). In particular, the positive vortex

at Z ,_ 3 cm appears to be split into two smaller structures and the negative one

at Z _ 4.5 cm is considerably weaker than its counterpart at Z _ 2 cm. The

average spacing between the streamwise vortices is about 1.5 cm, which gives an

initial spanwise to streamwise wavelength ratio of about 1.7. Further downstream,

by X = 17 cm (Fig. 10b), the two weak positive structures have merged into one.

Somewhat surprisingly, at X = 18 cm (Fig. 10c), the weak positive structure starts

to split up again and the negative region above it has broken away from the stronger

negative structure. Fig. 9(d) shows that at this location and phase, the selected

braid region is right in the middle of the first roller pairing process. The upstream

pair is in the process of rolling-up while the downstream pair has almost completely

merged together.

Further downstream, the split positive pair merges together again and by X =

25 cm, at a time (phase) at which the braid is located between two paired rollers,

two complete pairs of streamwise vortices are apparent (Fig. 10d). So while there is

no scale change in the region of the first roller pairing as such, the weaker vortices do
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FIGURE 10. Cross-stream plane phase-averaged streamwise vorticity (< f_x >/Uo,

cm -1) contours. Negative ........ , positive--, lowest level = +0.013, increment

= +0.025. (a) Z = 7 cm, phase 1; (b) X = 17 cm, phase 23; (c) X = 18 cm, phase

25; (d) X = 25 cm, phase 7.

undergo some temporary changes in structure and/or position. A similar behavior

of the weaker vortices in this region was also observed in our two-frequency forcing

results (LeBoeuf & Mehta 1994b).

The trends observed in the region of the first pairing continue during the second

pairing. Following the weak positive vortex at Z _ 3 cm, between X = 25 cm

(Fig. 10d) and X = 44.5 cm (Fig. 10e), the vortex splits and recombines three

more times. The split always occurs at the onset of an upstream or downstream
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FIGURE 10 (CONTINUED). Cross-stream plane phase-averaged streamwise vortic-

ity (< f_x >/[To, cm -1) contours. Negative ........ , positive _ , lowest level =
-t-0.013, increment = +0.025. (e) X = 44.5 cm, phase 14; (f) X = 46 cm, phase 17;

(9) X = 48.5 cm, phase 23; (h) X = 57 cm, phase 9.
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roller pairing. The weak vortex at Z ,-_ 3 cm recombines for the last time at X =

46 cm during the beginning of the third pairing (Fig. 10f). Note that throughout

its evolution through the first and second pairing, the stronger pair on the left

(0 < Z < 2.5 cm) does not change much, except that the vorticity levels drop

with streamwise distance as the vortices diffuse and thus enlarge. However, the

enlargement only takes place in the vertical (Y) direction; the spanwise growth is

presumably restricted by the neighboring streamwise vortices. In fact, the spacing

between the two vortices does not change at all in the region, X = 7 to 46 cm.

By X = 48 cm (Fig. 10g), the weak positive vortex at Z _ 3 cm splits again, but

this time the two neighboring negative vortices move closer together into the area

vacated by the weak positive vortex and start to amalgamate. The fragments of

the shredded positive vortex appear to move out of the measurement domain. At

X = 57 cm (Fig. 10h), only a single pair of streamwise vortices is clearly visible

with the distance between the pair doubled. This single pair persists to the end of

the measurement domain (X = 78 cm). The spacing between the pair is about 3.6

cm, which gives a spanwise to streamwise wavelength ratio of about 0.5.

Clearly the mechanism for the increase in spanwise scale is that the weakest

(positive) vortex splits up and moves out of the array, the two neighboring vortices

(both negative) move closer together and amalgamate, and the spanwise spacing is

hence readjusted. Apparently there was a tendency for the weakest vortex to split

and thereby permit merging of the two like-signed adjacent vortices during both

the first and second pairing; however, the merging finally occurred during the third

primary roller pairing. If this was a true amalgamation of two vortices of the same

sign, then one would expect the circulation of the new (merged) vortex to be higher

than those of the original vortical structures. And indeed, in the present results,

the circulation of the merged negative structure in Fig. 10(h) is twice that of one

of the original negative structures (that at Z _ 2 cm in Fig. 10f).

In order to confirm that the observed scale change was not an artifact of the

imposed forcing signal, time-averaged streamwise vorticity measurements for the

forced mixing layers (averaged over all 32 phases) were compared to those obtained

in the same mixing layer, but with the forcing turned off. All other initial and

operating conditions were maintained exactly the same in this unforced mixing

layer. In both cases, the spanwise scale observed in the mean streamwise vorticity

measurements was constant out to X _ 50 cm, after which it doubled abruptly.

Therefore, the forcing is obviously not responsible for the location of the observed

scale change.

The present results agree, in particular, with many of the observations and notions

of Bell & Mehta (1992) developed from their time-averaged measurements. They

also observed the first rapid scale change at X _ 50 cm, which was estimated to be

the location of the third roller pairing. As in the present study, the spanwise scale

was found to double in this region. Since the locations of the scale changes were

correlated with local increases in the average streamwise circulation per vortex,

Bell & Mehta suggested that the mechanism for the increase in spanwise scale was

amalgamation of vortices of the same sign, which is exactly what is observed here.
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Tung (1992) also reported seeing some (local) pairings of streamwise vortices of the

same sign. While the other proposed mechanisms, such as viscous annihilation and

amalgamation of opposite sign vortex pairs (Jimenez 1983, Rogers & Moser 1993),

have not been observed in the present direct measurements, in principle there is

no reason why they should not occur, providing the local circumstances (such as

streamwise vortex strength and spacing, for example) are right.

The balance of experimental evidence suggests that the spanwise wavelength of

the streamwise structures will increase, scaling approximately with the mixing layer

vorticity thickness. However, the increase will in general be non-linear (stepwise)

with the jumps coinciding with some pairing locations. An increase in spanwise

wavelength has not been observed experimentally in the absence of spanwise roller

pairings. However, it is quite clear that the spanwise scale does not have to increase

at every spanwise roller pairing location, although it can, as shown by Huang &

Ho (1990). This means that, in general, a constant ratio of spanwise to streamwise

wavelength will not be maintained. At least one (measured) mechanism for the

increase in spanwise scale is amalgamation of streamwise vortices of the same sign.

As Rogers & Moser (1993) suggested, in practice the details of the spanwise scale

change will probably be determined by the incoming disturbance environment.

Part 2: Forced wake

1. Motivation and objectives

The effects of (passive) spanwise perturbations on the wake three-dimensionality

have been investigated in a few studies. Meiburg & Lasheras (1988) investigated

the structure of a perturbed splitter plate wake through inviscid vortex simulations

and low Reynolds number flow visualization experiments and found that the redis-

tribution, reorientation, and stretching of vorticity produced counter-rotating pairs

of streamwise vortices which were superimposed onto the spanwise vortices. These

streamwise vortices were in the form of lambda-shaped structures and resided in the

braid regions connecting adjacent (opposite-signed) spanwise vortices. Subsequent

interaction of the streamwise and spanwise structures led to the formation of closed

vortex loops.

Although the secondary structure in a plane wake has already received some

attention both experimentally and computationally, all issues regarding the three-

dimensional structure of a wake developing from "natural" initial conditions have

not yet been addressed. The appearance of mean streamwise vorticity in time-

averaged measurements confirmed the existence of coherent spatially-stationary

secondary vorticity in wakes (Weygandt & Mehta 1993). However, the details of

the secondary structure are lost through the averaging process. The popular use

of Taylor's hypothesis in the past in interpreting three-dimensional measurements

can obviously add to the uncertainty. As for the computations, limits imposed by

boundary conditions and the expense associated with grid size and computation

time make it difficult to evaluate the structure of a "natural" spatially-developing
wake.
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The main objective of this study was to investigate the formation of three-

dimensionality and its evolution in a forced plane wake developing from laminar

boundary layers. Acoustic forcing was used to phase-lock the shedding of the Kar-

man vortices. Phase-averaged measurements were then used to quantify the re-

sulting vorticity development and interaction. These measurements, coupled with

previous experimental and simulation results, shed new light on the structural de-

velopment of spatially-evolving wakes with "natural" initial conditions (LeBoeuf &

Mehta 1994d).

2. Accomplishments

2.1 The experiment

The experiments were conducted using the same equipment as that used for the

aforementioned mixing layer experiments. Therefore a complete description will not

be repeated here. Of course, there were differences in operating conditions, namely

that the two sides of the wake were set to 9 m/s and the forcing consisted of a single

sine wave at the fundamental roll-up frequency (450 Hz, obtained from centerline

spectra in the unforced wake). The boundary layers on the splitter plate were

laminar and nominally two-dimensional at these operating conditions. Again, the

amplitude of the output signal from the amplifier was set to the absolute minimum

level which still gave adequate coherence in the phase-locking.

For the phase-averages shown in the next section, 768 ensembles of 16 samples

per cycle were measured. The measurement grid consisted of 29 uniformly spaced X

locations in the range 1 to 15 cm and 20 uniformly spaced Y locations distributed

over a linearly increasing range of-1 to 1 cm at X = 1 cm to -1.8 to 1.8 cm at

X = 15 cm. In the spanwise direction, the three-dimensional grid ranged from Z =

-5 to 5 cm with 41 uniformly spaced locations, thus occupying the central ninth of

the total test section span.

2.2 Re_ult_ and discussion

The streamwise evolution of phase-averaged spanwise vorticity (< f_z > /Uc,

cm -1 ) along the wake centerline (Z = 0) is depicted in Figs. 11(a-d) for four phases

(or times). In effect, every fourth phase out of the 16 measured phases per forcing

cycle is presented. The formation and evolution of the two rows of opposite-signed

vortices forming the familiar Karman street can be easily tracked through the four

phases shown. The initial spanwise instability leading to the first spanwise vortex

roll-up occurs at X _ 3 era. This coincides with the location at which signifieant

streamwise vorticity was first measured.

Details of the vortical structures were examined more closely by using two-

dimensional "cuts" through the three-dimensional data. The first signs of any

significant streamwise vorticity at phase 1 were found at X = 3 em. This loca-

tion is just upstream of the first positive spanwise roller, which at this phase has

not yet peeled away from the initial shear layer (see Fig. lla). It also eoineides with

the location where the instability leading to the formation of the spanwise rollers

first appears. The fact that significant streamwise vorticity is not measured in the
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FIGURE 11. Centerplane phase-averaged spanwise vorticity (< f_ > /U_, cm -_)

contours at various phases. Lowest level = 4-0.15, increment = 4-0.15. (a) phase 1;

(b) phase 5; (c) phase 9; (d) phase 13.

very near-field region (1 < X < 2.5 cm) of the present wake supports the view that

the appearance of streamwise vorticity further downstream is due to an amplifica-

tion of weak incoming disturbances -- it is not just a simple case of relatively strong

streamwise vorticity being fed in directly from the boundary layers. In this study,

perceptible amplification occurs as soon as the first spanwise vortices start to roll up.

Since the (upstream) braid undergoes streamwise stretching during this phase, it is

presumed that this is the mechanism by which weak incoming disturbances (weak

longitudinal vortices) are amplified. Details of the initial streamwise structures are

not uniform across the span because the "natural" disturbance environment of the

incoming flow field is not expected to be uniform.

In order to investigate the incoming disturbance field and initial formation region

in more detail, the cross-stream plane streamwise vorticity contours at X = 3 cm

are presented in Figs. 12(a) and (b) for phases 5 and 9. These figures show that the

incoming disturbance field is in the form of an approximate single row of counter-

rotating streamwise vortices whose cross-stream (Y) location changes with phase.

On comparing Figs. 12(a) and (b), which are exactly one half cycle apart, it is

evident that a single row appears on the lower half of the wake at phase 5, but on
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FIGURE 12. Phase-averaged streamwise vorticity (< f_x > /Ue, cm -1) contours

at X = 3 cm for various phases. Negative ........ , positive _ , lowest level =

+0.015, increment = +0.05. (a) phase 5; (b) phase 9.

the upper half at phase 9. On inspecting Figs. ll(b) and (d), it is apparent that

at phase 5 the lower spanwise vortex is rolling-up prior to shedding, whereas at

phase 9 the same situation is true for the upper roller. So it appears as though

disturbances from both boundary layers are fed into the wake and amplified. At a

given phase, depending on which (positive or negative) spanwise vortex is roiling up,

the disturbances fed into that vortex sheet are amplified as the sheet is stretched.

Thus, an alternating-signed array of streamwise vorticity is generated for every half

cycle. This explains why the time-averaged measurements of Weygandt &: Mehta

(1993) exhibited two rows of mean streamwise vorticity arranged in quadrupoles.

The alternating-signed inlet streamwise vorticity development for every half cycle

is characteristic of the "mode 2" disturbance field of Lasheras &: Meiburg (1990).

In their simulations, this mode resulted in out-of-phase undulations of the primary
rollers. These roller distortions were easily recognizable in the current data set. For

example, their imprint was evident in YZ-plane contours of streamwise velocity

(not shown here), which exhibited a pinching and cresting behavior in the spanwise

direction. The same type of behavior was also noted by Weygandt &: Mehta (1993)
in their mean velocity contours.

It is not clear from the present study if it will always be the alternating-signed

streamwise vorticity of mode 2 that is generated when the wake develops from
"natural" laminar boundary layers. It has been shown in both simulations and ex-

periments that the "mode 1" perturbation can also be sustained if the corresponding

disturbance field is introduced at the wake origin (Buell K: Mansour 1989b; Lasheras
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& Meiburg 1990). The mode 1 disturbance field consists of the same-signed stream-

wise vorticity for every half-cycle and leads to an in-phase undulation of the primary

rollers. In the present study, the results suggest that disturbances from both bound-

ary layers are fed into the wake as discussed above. It is fair to assume that, at least

upstream of the splitter plate trailing edge, the disturbance fields in the two bound-

ary layers are fully independent of each other. So it is either a coincidence that the

inlet disturbance field corresponds to mode 2, or there must be some realignment of

the disturbances in the region immediately downstream of the splitter plate trailing

edge (0 < X < 3 cm) which reorganizes a random field into one corresponding to

mode 2. Since the initial disturbance field is typically too weak to measure directly,

this issue cannot be easily settled in experimental studies.

Ill order to examine the details of the vorticity morphology, longitudinal (XY)

cuts in the Karman vortex street region (X = 7 to 15 cm) showing spanwise and

streamwise vorticity contours are presented in Figs. 13 and 14, respectively. The

XY-planes are chosen based on the spanwise locations of the streamwise structures,

as shown, for example, in the cross-stream contours of streamwise vorticity included

as Fig. 15. Two of the planes cut through adjacent rib structures at Z = 2.25 cm

(Figs. 13a and 14a) and 4.25 cm (Figs. 13c and 14c) and the third (Z = 3.25 cm)

represents the plane in between the two streamwise structures (Figs. 13b and 14b).

Of course, in the plane between the legs of the loops (Z = 3.25 cm), no significant

streamwise vorticity is measured (Fig. 14b). However, in the rib-planes, it is clear

from Figs. 14(a) and (c) that apart from rib vorticity connecting the spanwise

rollers, the rollers themselves also make a significant contribution to the streamwise

vorticity. This is a result of the rollers becoming kinked (along the span) in the

streamwise direction. Note that on a given side of the wake (positive or negative

Y), the streamwise vorticity contribution due to roller kinking is of opposite sign
to that of the ribs. This effect has also been noted in numerical simulations of

wakes (Buell & Mansour 1989b), and it is attributed to vortex stretching terms in

the streamwise vorticity equation (Buell 1991). The streamwise vorticity due to the

roller kinking is staggered relative to the ribs in the Y-direction, thus forming the

four-tier structure observed in YZ-planes (Fig. 15).

The main difference between the cuts at Z = 2.25 cm and Z = 4.25 cm is that

regarding the sign of the ribs; the upper ribs are negative and the lower ribs are

positive in Fig. 14(a) whereas in Fig. 14(c) the upper ribs are negative and the lower

positive. This configuration strongly suggests the vortex loop structure proposed

by Lasheras & Meiburg (1990) for their mode 2 perturbation. If the present three-

dimensional structure indeed consists of vortex loops, then the "heads" of the loops

should be visible in the spanwise vorticity contours at Z = 3.25 em, the plane

separating the rib structures at Z =2.25 and Z = 4.25 cm. Small spanwise vorticity

peaks, relative to the primary Karman vortex street, are certainly discernible in

Fig. 13(b). It is noteworthy that the peaks appear on both sides of the wake,

implying that it is indeed the mode 2 configuration -- the mode 1 perturbation

would only produce peaks on one side of the wake. Local spanwise vorticity peaks

are also observed in Figs. 13(a) and (c), the planes cutting through the rib vortices.



Shear layer measurements 335

2.0

E
0.0

-2.0 I I I

2.0

0.0

-2.0

2.0

0.0

(C) ..... .,

-2,0 t K t

7,0 9.0 I1.0 |3.0 15.0

X (cm)
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FIGURE 15. Cross-streamplane phase-averaged streamwise vorticity (< I2x >/U_,

cm -1) contours in the Karman vortex street region at phase 1 and X = 10 cm.

Negative ........ , positive -- , lowest level = +0.05, increment = +0.05.

This observation implies that the ends of the vortex loops wrapping around the

spanwise rollers are inclined in the spanwise direction.

The present results clearly show that a plane wake originating from laminar

boundary layers will develop a three-dimensional structure in the form of strearnwise

vorticity as soon as the primary instability generates spanwise vortex rollers. The

secondary structure takes the form of vortex loops which connect opposite-signed

spanwise rollers. The details of the vortex loop structures are dependent on the

initial disturbance field. This secondary structure topology forms an integral and

important part of a transitioning wake, and it must be accounted for in all modeling
and wake control studies.

Acknowledgements

This work was performed in the Fluid Mechanics Laboratory, NASA Ames Re-

search Center in collaboration with Dr. R. D. Mehta. We are grateful to Drs. R.

D. Moser and M. M. Rogers for many helpful discussions. We would like to thank

Dr. J. H. Watmuff for sharing his digital sine-wave generator design and also for

many invaluable suggestions.

REFERENCES

BELL, J. H. AND MEHTA, R. D. 1992 Measurements of the streamwise vortical

structures in a plane mixing layer. J. Fluid Mech. 239_ 213.

BUELL, J. C. 1991 A hybrid numerical method for three-dimensional spatially-

developing free-shear flows. J. Comp. Phys. 95_ 313-338.



Shear layer measurements 337

BUELL, J. C. _ MANSOUR, N. N. 1989a Asymmetric effects in three-dimensional

spatially-developing mixing layers. Proc. Seventh Syrup. Turbulent Shear Flows,

Stanford University, August, 9._.I-9._.6.

BUELL, J. C. & MANSOUR, N. N. 1989b Near-field structures in three-dimensional

spatially-developing wakes. Proc. Tenth Australasian Fluid Mechanics Confer-

ence, Melbourne, Australia, 3.el-3._4.

HUANG, L. S. & Ho, C. M. 1990 Small-scale transition in a plane mixing layer.
J. Fluid Mech. 210, 475-500.

JIMENEZ, J. 1983 A spanwise structure in the plane mixing layer. J. Fluid Mech.

132, 319-326.

LASHErtAS, J. C. & CaoI, H. 1988 Three-dimensional instability of a plane free

shear layer: an experimental study of the formation and evolution of streamwise
vortices, or . Fluid Mech. 189, 53-86.

LASHERAS, J. C. & MEIBUrtG, E. 1990 Three-dimensional vorticity modes in the

wake of a fiat plate. Phys. Fluids A. 12, 371-380.

LEBOEUF, R. L. 1993 Vortical structure in a forced plane mixing layer. Annual

Research Briefs - 1993, Center for Turbulence Research, NASA Ames Research
Center - Stanford University, 285-298.

LEBOEUF, R. L. &; MEHTA, R. D. 1994a On using Taylor's hypothesis for three-

dimensional mixing layers. Submitted to Phys. Fluids.

LEBOEUF, R. L. & MEHTA, R. D. 1994b Vortical structure morphology in a

forced mixing layer: initial roll-up and pairing. Submitted to J. Fluid Mech.

LEBOEUF, R. L. & MEHTA, R. D. 1994c Measurements of spanwise scale change

in a forced mixing layer. Submitted to J. Fluid Mech.

LEBOEUF, R. L. & MEHTA, R. D. 1994d Topology of the near-field vortical
structures in a three-dimensional wake. Submitted to J. Fluid Mech.

MEIBURG, E. & LASHEaAS, J. C. 1988 Experimental a.qd numerical investigation

of the three-dimensional transition in plane wakes. J. Fluid Mech. 190, 1-37.

MOSEa, R. D. & ROGEaS, M. M. 1993 The three-dimensional evolution of a

plane mixing layer: pairing mad transition to turbulence. J. Fluid Mech. 247,
275-320.

NYGAARD, K. J. & GLEZER, A. 1991 Evolution of streamwise vortices and gen-

eration of small-scale motion in a plane mixing layer. J. Fluid Mech. 231,
257-301.

ROGERS, M. M. & MosErt, R. D. 1991 The three-dimensional evolution of a

plane mixing layer. Part 1. The Kelvin-Helmholtz rollup. NASA T-M 103856.

ROCEaS, M. M. & MosEa, R. D. 1992 The three-dimensional evolution of a

plane mixing layer: the Kelvin-Helmholtz rollup. J. Fluid Mech. 243, 183-226.

ROGERS, M. M. & MOSEa, R. D. 1993 Spanwise scale selection in plane mixing

layers. J. Fluid Mech. 247, 321-337.



338 R. L. LeBoeuf

TUNG, C. H. 1992 Initial streamwise vorticity formation in a two-stream mixing

layer. PhD Dissertation, University of Houston.

_VEYGANDT, J. H. _ MEItTA, R. D. 1993 Three-dimensionalstructure of straight

and curved plane wakes.. JIAA Rep. TR-110. Dept. of Aeronautics and Astro-

nautics, Stanford University. Shortened version to appear in J. Fluid Mech.



Center]or 7_rbulence Research
Annual Research Briefs 1994 N95- 22461

Numerical study of boundary layer interaction
with shocks- method and code validation

By N. A. Adams

1. Motivation and objectives

A major problem in modeling of turbulent supersonic flows is the correct assess-

ment of viscous-inviscid interaction problems. Of particular interest is the interac-

tion of boundary layers with shocks. Present turbulence models give in most cases

unsatisfactory results in the region of rapid distortion and in the separation region

(if one is present) in particular with regard to mean flow profiles and turbulence

quantities (cf. Kline et al., 1981).

Recent direct numerical simulations (DNS) at moderate supersonic Mach num-

bers of boundary layers without interaction show that the effect of compressibility

in those cases is rather small (Guo & Adams, 1994). Even at those Mach num-

bers, however, compressibility can have a significant effect in case viscous-inviscid

interaction is present.

Compression corner flows are of great practical interest since they appear to be

omnipresent in aeronautical configurations (aircraft fuselage, fuselage-wing junc-

tion, engine inlet, etc.). On the other hand, they also give rise to a particularly

interesting combination of phenomena, which all are more or less confined to a

relatively narrow region about the corner. First, the turbulence in the oncom-

ing boundary layer responds to a rapid distortion. This is a generalization of the

problem of isotropic turbulence interacting with normal shocks (e.g. Lee, 1993) to

anisotropic turbulence with inhomogeneous mean shear. Second, for large enough

Mach numbers and deflection angles there is a shock-induced unsteady separation.

The separation bubble is contained by a detached curved shear layer, and fluc-

tuations in this shear layer, subject to high strain, are strongly amplified. Some

experiments report evidence for GSrtler-like vortices in the detached shear layer

(Smits _z Muck, 1987). Third, there is unsteady shock motion, which is suspected

to be triggered by bursting events in the oncoming turbulent boundary layer (An-

dreopoulos & Muck, 1987). And finally, the shock is generated at the wall. This

is favorable for direct numerical simulations since it relieves the need to accurately
introduce a shock at the outer boundaries.

The objective of the present work is the direct numerical simulation of shock

boundary layer interaction. This report summarizes the first phase during which

a numerical method suitable for this problem has been developed and a computer
code has been written and tested.

2. Accomplishments

The first part of this work focuses on the development of a new type of spatial

discretization scheme which combines the spectral-like wave-representation of sym-

metric compact finite difference schemes (Lele, 1992) with a suppression of aliasing
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errors by implicit dissipation at non-resolved wavenumbers and increased robustness

against generation of spurious waves at the boundaries. In an additional step the

scheme is made shock capturing by switching locally to an essentially non-oscillatory

(ENO) scheme near discontinuities (in case of weak solutions). In this report the

numerical method is merely outlined; for details the reader is referred to Adams &

Shariff (1994).

The newly developed spatial scheme is used to discretize the reduced hyperbolic

part of the Navier-Stokes equations while for the parabolic part a symmetric com-

pact finite difference scheme is used (of. Adams, 1993). This report summarizes

the status after implementation and validation of the according computer code.

The performance of the present working code lies in between about 200 MFLOPS

and about 140ps per grid point and time step (pure 3rd order ENO, 2D) and about

500 MFLOPS and roughly 20/_s per grid point and time step (pure compact-FD,

3D) on a single CRAY Y-MP C90 CPU. These relations reflect the increased number

of logical instructions required for the non-linear ENO scheme.

2.1 Numerical method

Generalizing the formulation of compact finite-difference schemes (Lele, 1992),

a family of centered upwind-biased compact schemes of 5th order is introduced.

Numerical dissipation is used to suppress unresolved wavenumbers while an accurate

representation of the dispersion relation for resolved wavenumbers is required. This

requirement is formulated as a constrained optimization problem. A parameter

study allows for the generation of a whole family of locally optimal schemes, one

member of which, called P455/1, we are using in this study. The general formula

of the schemes is
t_r

Z _ r(a) 1 v.""JJ+. = V Z a fi+. (1)
D------/J| V=--Vt

In this equation fj = f(xj) is the grid function, the derivative of order a of which

is searched for. For scheme P455/1 it is a = 1, /it =/_r = ut = ur = 2 for interior

schemes, pt = ut = 1, pr = 2, ur = 3 for the left next-to-boundary scheme and

/2t = ut = 0, /_r = 2, ur = 4 for the left boundary scheme (accordingly for the

schemes at the right boundary). The coefficients a_, and a_ are determined from

order conditions and the abovementioned optimization problem. For the numerical

values see Adams & Shariff (1994).

The discrete derivative operator for a semi-discretized scalar advection equation

on a strip consists of interior and boundary schemes whose frequency responses are

shown in Fig. 1. It should be noted that the dispersion, Fig. la, is well approximated

up to wavenumbers larger than 2, significantly increasing the resolved-wavenumber

domain when compared with non-compact finite-difference schemes (e.g. that of

Ral & Moin, 1993). The numerical dissipation is shown in Fig. lb.

Moreover, the compact formulation allows for stable high-order boundary closures

avoiding the order-drop at the boundary as in Ral & Moin (1993). Note that it

has been shown by Gustafsson (1975) that for hyperbolic equations the boundary

closures must not be of order less than (r - 1) to maintain a global order r of
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is the wavenumber normalized with the grid spacing.

the semidiscretization. The linear stability of this scheme is analyzed in Adams &

Shariff (1994).

Two different approaches of making an underlying compact scheme shock captur-

ing (nonlinearly stable) have been pursued initially. The first followed the approach

of Cockburn & Shu (1994), which required some minor modifications to be appli-

cable for our general type of upwind compact schemes. Numerical tests, however,

showed an unsatisfactory shock resolution. A Gibbs-like phenomenon could not be

suppressed satisfactorily without a significant smearing of the shock. The second

follows the guideline of Hou & Le Floch (1994), who gave evidence that a noncon-

servative scheme converges to a weak solution (so a solution exists) if in the neigh-

borhood of discontinuities a conservative scheme is used. In our case scheme P455/1

is used in the smooth regions, while a 5th order ENO scheme in finite-difference

form (Shu & Osher, 1989) using Roe fluxes on local characteristics with entropy-fix

by switching to a local Lax-Friedrichs flux formulation is used near discontinuities.

Without being able to give theoretical evidence, numerical tests reported in Adams

& Shariff (1994) demonstrate that the hybrid scheme possesses the ENO property.

For integration in time two different 3rd order Runge-Kutta methods are used. A

pure ENO scheme as spatial discretization is combined with a TVD Runge Kutta

scheme (Shu, 1988). The hybrid scheme is combined with a low-storage explicit

Runge Kutta scheme (Williamson, 1980, case 7). The admissible time step is calcu-
lated from an estimated bound for the discrete convective and the discrete viscous

operator using a CFL (Courant-Friedrichs-Lewy) condition.

2.2 Di_cretization of the compressible conservation equation_

The fundamental equations are the volume-specific conservation equations for
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mass momentum and energy

0U OF 0G OH

ot - Ox +-b-b-u +z (1)

The flux vectors F, G, and H are given, for example, in Anderson et a/.(1984).

The viscosity p is calculated from Sutherland's law. Z is a distributed forcing

which can be used to cancel the residual of a given basic flow (this is done in the

calculations of sections 2.4.1 and 2.4.2, otherwise Z = 0). For a discussion of this

term see, for instance, Adams (1993).

The fundamental systems of PDE are discretized in a method of lines manner, i.e.

the spatial derivatives of the fluxes are approximated by a spatial discretization. The

system thus becomes an ODE in t in terms of the grid point values and is projected

forward in time with a Runge-Kutta integration method.

The viscous fluxes are discretized in conservative form by a symmetric P346-

scheme used in Adams (1993). Note that although a conservative discretization of

a linear heat equation with this scheme would be asymptotically unstable (Adams,

1993), this kind of discretization remains bounded in the present case with an

upwind discretization of the convective terms. Since a conservative discretization

has significantly less operations, it has been given the preference over the non-

conservative discretization used in Adams (1993).

The discretization of the convective terms has been a major objective. For the

details the reader is referred to Adams L: Shariff (1994). Here, it is summarized in

a few words. At each t the fluxes calculated from the instantaneous solution are

processed by a discontinuity detector algorithm, and cells are marked for treatment

by the ENO scheme. In the present code this is done in each index space component,

and a whole plane is marked if at least one cell of this plane contains a transition.

This is favorable for vectorization but has the disadvantage that the ENO scheme

may be used in smooth regions, too. For the marked cells the fluxes are projected on

the local characteristics by a transformation with the left-eigenvector modal matrix

of the cell's Roe matrix. The flux derivatives at the cell faces (i.e. the nodes)
are reconstructed from the cell-centered numerical fluxes on local characteristics

obtained with a 5th order ENO scheme using a Roe-flux formulation with a local

Lax-Friedrichs flux as entropy fix. The numerical fluxes (after application of the

ENO procedure) are then projected back onto the computational space basis by a

transformation with the corresponding right-eigenvector modal matrix.

The flux derivatives in the smooth regions are calculated with the positive biased

and the negative biased compact schemes. This is done by projecting the fluxes

with the respective right-hand side matrices of the schemes onto a local average,

where the entries at the grid points at which the solution is to be taken from the

ENO procedure are replaced with the already known flux derivatives. The left-

hand side is modified accordingly by setting the respective submatrix to unity. In

the reconstruction step the so obtained linear equation systems (pentadiagonal) are

solved for the positive and negative biased fluxes. The upwinding is done by choos-

ing the flux derivative in upwind direction according to the direction of the local
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characteristics at each grid point. In case of a vanishing eigenvalue, the arithmetic

mean is taken as is for the flux derivatives obtained by ENO since they are already

upwinded. The advantage of this non-building block (though straight forward) flux

splitting is that the flux-approximation is smooth up to the order of the scheme at

sonic points. This would not be the case in general if split fluxes would be used.

_.3 Outflow boundary treatment

A major concern of direct numerical simulation methods for spatially evolving

convective problems is the correct formulation at the outflow boundary. Since this

boundary is artificial a prescription of the correct conditions would require the

knowledge about the solution at this plane. Several approaches are now in more or
less standard use. For incompressible flows there is the relaxninarization method of

Kloker et al.(1993). In compressible flow Pruett et ai.(1994) use a buffer domain

approach. Guo et ai.(1994) suggested a much simpler method with the same effi-

ciency as the buffer domain approach. In this work we adopt the latter, though in

a different formulation, to account for the non-perturbation form of the equations

solved here since the basic flow residual is not compensated by a forcing term as

in Pruett et al., 1994, and Guo et al., 1994. Simpler approaches, for instance non-

reflecting conditions (e.g. Poinsot g5 Lele, 1992), treat viscous wave forms within

the boundary layer improperly and give rise to spurious reflected waves.
The basic idea follows closely the concept of a sponge layer according to Israeli

&5 Orszag (1981)• From a simple model equation as

Ov Ov a(x)v (2)
Ot Ox

it is seen that a(x) in the last term of the right-hand side has the character of a

Newtonian cooling coefficent.

We choose the following damping function (cf. Israeli & Orszag, 1981)

a(x)= As(Ns + 1)(Ns + 2)(x ___ x) (3)
_At.gZ ,b$) ---

• L_
for xs < x < Lx. It has the properties: (1) f: a(x)dx = As and (ii) a(Lx) = O.

The implementation is done readily by adding a term

zs = - u0)

for xs < x < Lx to the fundamental equations (1). Herein U denotes the vector of

conservative variables and U0 = UIt=o. From property (ii) of a it is clear that the

fundamental equations (1) are recovered at x = Lx where a perfect non-reflecting

condition is prescribed (Thompson, 1987).

_._ Code validation

The computer code is validated using two kind of tests. The first is typical for
DNS codes where a known mean flow is enforced and the correct representation of a
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TABLE 1. Flowparameters.

N. A. Adams

Case _f_ Re6, Tw/T_ a _ Lz

A 2.5 12773 2.041 0.26 0.43 15

B 4.5 10000 4.38 2.25 0 10

linear eigensolution is required. The second is typical for CFD codes where a mean
flow is to be found.

In the first case we check for the efficiency and correct implementation of deriva-

tive and integration routines by marching eigensolutions of a temporally evolving

boundary layer (streamwise periodic) in time. The global growth rate (defined from

the mode energy Eq. (4)) is required to match the real part of the eigenvalue. Also,

since the amplitude function is only a function of the wall normal coordinate z, fre-

quency and growth rate at a given z should be close to the imaginary and real part

of the eigenvalue locally in z. Inflow and outflow boundary conditions are examined

by considering spatial instability in a parallel boundary layer. The spatial growth

rate is required to be sufficiently accurately represented and the outflow boundary
condition should have a limited upstream effect.

In the second test the steady problem of a shock impinging on a flat plate bound-
ary layer is investigated. Though none of the methods used here is suitable to obtain

steady state solutions efficiently, evidence is given that the (quasi time dependent)
solution marches toward a steady state. After a reasonable number of iterations

the computations are halted and compared with reference data.

2.4.1 Eigensolutions of temporally evolving boundary layer

As test cases we choose cases B and C from Adams (1993, section 6.1). For

completeness the flow parameters are given in table 1. A combined algebraic-sinh

mapping is used in z; see Adams, 1993, section 6.1 for parameters. Boundary

conditions are periodic in x and y, non-reflecting at z = L_, and isothermal no-slip

at the wall with the wall temperature set to the adiabatic wall temperature (Mack,
1984).

The unperturbed mean flow is calculated from the compressible similarity equa-

tions (Stewartson, 1964) with a shooting method (Adams, 1993). An unstable

eigenmode with streamwise and spanwise wavenumbers a and _, respectively, as

given in table 1 calculated from a spectral solution method (Simen, 1993) (used

earlier in Adams, 1993) is superimposed. For case A the eigensolution is an oblique

vortical mode, for case B a two dimensional Mack mode (mixed vortical/acoustic).

In both cases the initial amplitude is A = 10 -4. The grid spacing in x and y is

uniform, the box dimensions are chosen consistently with the wavenumbers such

that the eigenmodes become (±1, :t:1) and (+1,0) Fourier modes, respectively.

For the calculations scheme P455/1 is used. Since the solution is smooth the
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FIGURE 2. Global growth rate. (a) test case A, -- (10 x 10 x 50), ........ (20 x

20 x 50), .... (20 x 20 x 100), ---- (40 x 40 x 100), -- linear theory. (b)

test case B,- (10 x 50), ........ (20 x 50), .... (20 x 100), ---- (40 x 100),

---'-- linear theory.

ENO scheme is inactive. We define a modal energy as

E(k,, k_;t) = #(z)_,(k_, k_;t)_;(k,, k_;Odz (4)

uj stands for the three velocity components (sum over j).

Fig. 2 shows the growth-rate obtained from the modal energy for different dis-

cretizations for 1100 time steps each. The initial transient is an effect of different

solution methods and different meshes used for the initial eigenmode and for the

DNS.

Figs. 3 and 4 show the local growth rate and frequency across the boundary layer

for test cases A and B, respectively, making use of the fact that the eigenfunction

maintain their shape in a parallel boundary layer. The improvement from a dis-

cretization 10 x 50 to 20 x 100 is mainly due to the refinement in z which allows

for a better resolution of the region around the critical layer which is also a region

of high curvature of the mean-flow profiles.

2.4.2 Eigensolutions of spatially evolving boundary layer

Since the y-discretization remains unchanged compared to the test cases in sec-

tion 2.4.1, we can restrict ourselves here to 2D-problems. The main concern is

the correct formulation of the inflow boundary condition and the efficiency of the

outflow-boundary condition given in section 2.3. The test case is the spatially evolv-

ing equivalent of case B of section 2.4.1. Also, since it has been found in section

2.4.1 that Nz = 51 is about sufficient to resolve the eigenfunctions in z, we focus

on the effect of changing Nx and the outflow boundary condition parameters. At

the inflow all primitive variables are prescribed (as function of t) according to the
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(40 × 100),-----linear theory.

well-posedness requirement (Oliger & SundstrSm, 1978); at the outflow the sponge

layer of section 2.3 together with a non-reflecting condition at x = Lx is used. As

validation-test we check for the correct spatial growth rates in terms of primitive

variables at an arbitrary position z. The growth rates are obtained from the coeffi-

cients of the solution's Fourier transform in y and t. These coefficients assume the

form

aye(x,z) = A(z)e _ (5)

where A(z) is the complex amplitude function of the linear eigensolution. From two
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successive x-stations the complex a can then be obtained by

z)] - ln[ay,(xl z)]
a = -i ln[a_i(x2' ' , (6)

x 2 -- x I

so that the growth rate is -Im(a) and the frequency Re(a).

Fig. 5 shows the effect of the sponge layer. From the experience with a symmetric

compact scheme (Guo et al., 1994) we choose the sponge layer thickness to be one

wavelength of the eigenmode. The minimum necessary sponge-layer thickness is

problem dependent and is therefore not further investigated here. Spurious reflected

waves penetrate into the computational domain further upstream in the case of a

pure non-reflecting boundary condition, Fig. 5b, than in the case of a non-reflecting

boundary condition plus a sponge layer, Fig. 5a. Though this effect is not so

pronounced for the low amplitude linear perturbation in the present case, it is

expected to be stronger for large amplitude turbulent fluctuations. Note that non-

reflecting boundary conditions are not consistent with the evolution of a boundary

layer eigensolution. This reflects in large oscillations near the outflow boundary of

a sensitive measure as the local growth rate, Fig. 5b.

From Fig. 6 it is evident that increasing the order Ns of the cooling function

polynomial in Eq. (3), (making the damping more localized) or increasing the cool-

ing intensity As has no noticeable effect on the growth rate or the extent of the

valid domain. Thus it is expected that an increased damping is able to extinguish

stronger turbulent fluctuation efficiently without increasing the invalid part of the
domain.

Fig. 7a shows the same case as Fig. 5a, but the integration time is increased

to seven periods so that the wave can travel about two times the width of the

computational box. Obviously the region of upstream influence of the boundary
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condition did not increase, so that the shorter integration times used before lead

to correct conclusions about the upstream extent of the invalid part of the domain.

In Fig. 7b both streamwise and vertical number of grid points are doubled, which

results in a more accurate approximation of the growth rate as expected.

Two remarks are in order. Firstly we note that the setup used in the above

test calculations is quite severe, allowing for only 4 wavelengths ,k of the primary

wave in x, which finally results in about 2.5_ for the extent of the valid part of

the domain. Second, inflow transients are apparently unavoidable (as the initial

transients were in the preceding section) since the inflow perturbation is taken

from a linear stability solution obtained with a different method and on a different
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TABLE 2. Flow parameters.

quantity value comment

T_ 221.6K
Mo_ 2

p_ 9178.79Pa
Pr 0.72

_; 1.4

R 287.03

/_* 1.449.10-Skg/m/s

S* l10.4K

Redo 140000

Re_l 450000

Re61 909.9053

6_ 1.5309 10-4m

6_ 4.7325 10-4m

_o 82.7559

L_ 415

L_ 200

estimated

estimated

at _0, from sim. sol.

99.9% thickness

349

mesh. Other DNS results (e.g. Pruett et al., 1994, Guo et al., 1994) confirm this

observation.

It can be concluded that the outflow boundary treatment has no upstream effect

further than roughly 1.5A upstream of Lx for (L_ - xs) = )_. The findings in this

section resemble the experiences made by Guo et al.(1994) with a different spatial

discretization and a different cooling term. Pruett et al.(1994) report that their

buffer domain approach spoils an upstream region of about 2A. The sponge layer

approach thus allows for a much simpler formulation with a comparable performance

of a well-tuned buffer-domain approach.

2.4.3 Laminar boundary layer interacting with an impinging shock

The following test example is a standard case for the validation of steady state

Navier-Stokes solvers. Experimental data are provided by Hakkinen et a1.(1959).

Although the experimental evaluation is limited and the comparison suffers from

incompletely reported flow parameters, the experiment's favorable feature is that

the flow is laminar, although it should be noted that the test section extends into

the region where the laminar flat plate boundary layer is unstable.

An extensive numerical investigation of this particular problem has been done

by Katzer (1989). We emphasize here that for the results presented in this section

time-accurate and low-dissipation methods have been used. The computations have

thus been halted before a true steady state has been reached. The flow parameters

are given in table 2 (reference lengttl is 6_, dimensional quantities are marked with

a star).
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FIGURE 8. Quasi-Schlieren plot (intensity proportional to norm of density gradi-

ent).

Fig. 8 shows a quasi-Schlieren plot (merely the norm of the density gradient)

when the computations were halted. A shock, introduced at the inflow boundary,

impinges at _ = 32.6 ° on the laminar boundary layer along a flat plate. At the

boundary layer edge it is reflected as a decompression wave. The shock-induced

boundary layer separation gives rise to a compression wave in front of the separation

region and a compression wave behind.

As initial condition we take the solution of the inviscid shock-reflection problem

outside of the boundary layer, while near the wall a boundary layer from a similarity

solution is given. The shock is to impinge on the plate at xsh = 325.2041 for the

inviscid problem.

As boundary conditions we fix at the inflow the initial condition for all primitive

variables (giving the correct number of 5 conditions for the Navier-Stokes equations

according to Oliger & SundstrSm, 1978). At the outflow we prescribe perfectly

non-reflecting boundary conditions (Thompson, 1987), and no viscous conditions

are imposed. In fact the imposition of weak viscous boundary conditions in terms

of derivatives of the viscous fluxes (Poinsot &: Lele, 1992) was found to have no effect,

while the imposition of boundary conditions in terms of stresses (Dutt, 1988) re-

sulted in an outflow boundary-layer due to the inconsistency between boundary con-

dition and solution. At the wall we prescribe a no-slip adiabatic condition. At the

upper boundary all flow variables are prescribed corresponding to the state behind

the impinging shock. Non-reflecting conditions at the upper boundary (Thompson,

1987) were found to give rise to a viscous (heat-equation like) instability emerging

from the corner between inflow and upper boundary. The reason for that behavior

is that the presence of the shock close to the upper boundary at the inflow leads

to non-negligible viscous terms near the edge of the computational box, and inflow
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and boundary conditions which are well posed only in the inviscid limit become

invalid.

We perform a calculation with N, = 151 and Ny = 100. First, the meaningless

transient caused by the initial condition is spanned by marching a 3rd order ENO

scheme 5500 iterations in time (method A). Note that since we use a time accurate

solution procedure and since the ENO-stencil changes in time, the residual does not

reach machine zero but merely the truncation error of the spatial discretization.

This has been confirmed by continuing the calculation with method A for 5500

additional iterations (not shown). After the residual settled down the computation

is continued for another 5500 iterations with the hybrid scheme (method B). Since

the Reynolds number is small, the shock is resolvable by the scheme and the ENO-

scheme is only active in z in the outer 4.95% of the domain (in the average over

all iterations), where the grid spacing is wide (shock detector parameter settings

: /3, = 1, /3, = 0.05). Fig. 9 shows the evolution of the residual for the four

conservative variables.

Figs. 10 and 11 show pressure contours after 5500 iterations with method A and

method B, respectively. The hybrid scheme appears to represent the reflected com-

pression and decompression waves more accurately than the pure ENO scheme. This

suggests that the internal phenomena of the boundary layer are better represented.
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FIGURE 11. Pressure contours after 5500 additional iterations, method B (rnin =

0.16, max = 0.26, inc = 0.002).

This finding is confirmed if we compare numerical and experimental results.

Fig. 12 shows surface pressure and skin friction. In both cases method B gives

a better representation. Note that the experimental values downstream of the sepa-

ration region appear to be affected by the particular method of measuring the skin

friction with a pressure probe (Hakkinen, 1959). The accurate numerical solutions

of Katzer (1989) show that the experimental values in this region are somewhat too

large.
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The correspondence between experimentally and numerically obtained velocity

profiles is reasonable for method B and less satisfactory for method A, figure 13.

Two remarks axe in order. First, as can be seen from Fig. 9, the residual is

still decreasing when the computation with method B was halted, though with a

shallow slope as expected for a time-accurate method. Thus the results should not

be considered as converged• Second, the residual level after the computation with

method A was halted does not decrease if the computation is continued with method

A. The further decrease of the residual and the improvement of the solution is due

to method B.

We finally note that for the present 2D calculations the code performance of the
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pure 3rd order ENO scheme was 228 MFLOPS and 143 #s per grid point and time

step, while the 5th order hybrid scheme performed at 354 MFLOPS and 23 #s per

grid point and time step (CRAY fpp and eft77 optimization only, single processor

Y-MP C90).

3. Future plans

In the next step the computational code will be extended to generalized coor-
dinates (in (x,z)). This requires the characteristic transformation routines to be

adapted and an extension of the flux calculation routines.

The final objective is to simulate a compression corner flow according to a suitable

experiment. Experiments presently considered are those of Smits & Muck (1987)

(having the advantage of relatively detailed turbulence data, the disadvantage of a

quite large Reynolds number Re62 = 78000) of Ardonceau et al.(lacking the details

of the previous one but having a smaller Reynolds number of roughly Re62 = 7700),

and of Zheltovodov et al.(at about Re6_ = 9720 for the incoming boundary layer
with the problem that mean flow and turbulence data have been obtained in different

wind tunnels). The Mach number range of those experiments is between 2.25 and

3, the turning angles go from 8 ° to 25 °.
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Resolution requirements for
velocity gradients in turbulence

By J. Jim_nez 1

1. Motivation

Since high resolution numerical simulations of turbulent flows, or experiments

at high Reynolds numbers, represent a substantial investment in resources, the
estimation of the minimum resolution required for the study of a given property

has been the subject of continued interest. Early results include the papers by

Wyngaard (1968, 1969) on the maximum hot wire length allowed for the resolution

of the dissipative range of the energy spectrum in isotropic turbulence, and the
more recent one by Klewicki and Falco (1990) for wall bounded flows. Both studies

conclude that an adequate measurement of the spectrum requires hot wires sensors

smaller than approximately three times the Kolmogorov length, r/= (v 3/e) 1/4. The

latter paper also treats the measurement of velocity gradients and concludes that
the same resolution is needed for reliable estimates of the variance of Ou/c3t, and is

probably sufficient for its skewness. From the numerical point of view it has been

estimated that the resolution required in a properly de-aliased spectral code for

the study of the vorticity structure in the near wall region of a turbulent channel

is about 5 Kolmogorov lengths (Kim, Moin and Moser, 1987), although even in
that case, the grid spacing in the direction normal to the wall, in which gradients

are highest, is usually taken much smaller. The study of the dynamics of intense

vorticity structures in isotropic turbulence requires kmaxr/ > 2, where kmax is the

largest resolved wavenumber, corresponding to a distance between collocation points

Ax/_] <_ 1.5 (Jim6nez e_ al. 1993).
Different properties require, in general, different resolutions, and the present pa-

per is dedicated to the requirements for the measurement of the probability dis-

tribution functions of the velocity gradients and, in particular, of their low order
moments. The deviation of these quantities from the values corresponding to a
Gaussian distribution was one of the first indications of the presence of Reynolds

number-dependent intermittency (Batchelor and Townsend 1949) and has been the

object of recent interest as numerical simulations have become able to explore the

distribution of gradients in the low Reynolds number range, while new experiments

have extended the range to increasingly high Reynolds numbers (Van Atta and An-
tonia 1980, Saddoughi and Veeravalli 1994). We will use progressive filtering of the

results of numerical simulations of isotropic turbulence as a model for the effect of

a sensor of finite size (Wyngaard 1968). The numerical issues will be addressed
first to insure that the simulations are fully resolved from the point of view of the

1 Also with School of Aeronautics, U. Polit_cnica, Madrid.
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Rex N kmaxT1 Ax /rl -Fat F4t F6t F4t F6t

66 256 4 0.78 0.47 4.7 60 6.3 120

94 256 2 1.57 0.52 5.3 80 7.6 200

TABLE 1.

paper.

Numerical and statistical parameters for the cases analyzed in the

velocity gradients. This will also give us an estimate for the numerical resolution

required for the different quantities.

2. The numerical fields

The numerical flow fields are the same used in (Jim_nez et al. 1993) and are

extensively discussed there. They are direct numerical simulations of isotropic ho-

mogeneous turbulence in triply periodic boxes at two different Reynolds numbers in

the low end of the range for which dissipation first becomes independent of Reynolds

number. They are summarized in Table 1.

The numerical method is fully spectral, using primitive variables, u, p, with

dealiasing achieved by a spherical mask and phase shifting (Rogallo 1981, Canuto

et al. 1987). The resolution N given in Table 1 reflects the number of real Fourier

modes in each direction before dealiasing. A more practical measure of resolution

is the largest useful wavenumber after de-aliasing, kmax = v_N/3. In terms of

distance between "effective" collocation points, the grid spacing is Ax = 7r/kmax.

All simulations are forced to achieve a statistically stationary steady state. Forcing

is achieved by introducing, for all the modes with wave numbers k = Ikl _< 2.5, a

negative viscosity coefficient whose magnitude is adjusted every few time steps so

as to keep constant the product kmaxr_. The instantaneous energy dissipation rate,

e, the one-component r.m.s, velocity, u', and the Taylor and integral length scales,

A and L, are computed in terms of the three dimensional energy spectrum E(k), as

explained in (Jim6nez et al. 1993). The microscale Reynolds number is defined as

Rex = u'A/u, and the large-eddy turnover time as T = L/u'.

Throughout this paper the probability density functions are often characterized

by their generalized flatness factors

• I. n/2
Fn = I,Xn/l_2 , = f unp(u)du.

Flatness factors with subscript _ refer to the pdf of the longitudinal velocity deriva-

tives, au/ax, while those with subscript t refer to transversal derivatives, au/ay.
In all eases, equivalence was assumed for the three coordinate directions and used

to augment the statistics.

The parameters in Table 1 represent the highest resolution available for each

Reynolds number. For each run the pdf's of the velocity components and gradients



Resolution requirements in turbulence 359

3-

" i

/
n

i
/.

lif t 10°

k_7

i

10. L

11)5.

i%
1tl.7

1%
!o

-9

io o i i i

k_
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were computed periodically and accumulated. For all but the highest resolution

cases, this was done "on the fly" while the simulation was advanced, and the statis-

tics represent several tens of fields spaced at least by 0.1 T. For N = 256 the time

step was too small to generate a sufficient number of fields in a single simulation,

and the statistics were accumulated using the restart files from different runs. The

number of fields used in this case is smaller, O(10). The restart fields were also

used for the filtering experiments described later.

There is considerable temporal variability in the extreme tails of the distributions,

and the values for the different moments given in Table 1 are subject to apprecia-

ble statistical uncertainty. The number of significant figures given in the table is

intended to give a rough indication of the reliability of the different figures, derived

from the variability among different flow fields.

The same simulations were run at lower resolutions to check for numerical conver-

gence. The three dimensional spectra for Rex = 62 at four different values of kmaxO

are given in Fig. 1, and the pdf's for the velocity and for the longitudinal and trans-

verse velocity gradients are given in Fig. 2. It is clear that there is little difference

in any of these properties for resolutions better than kmaxr/_ 2, while there is some

divergence in the pdf's at kmaxr/ _ 1 and a rapid deterioration thereafter. Since

higher moments are dominated by the extreme probability tails of the pdf's, Fig. 2d

shows that those tails are the first ones affected by the lack of resolution, which is

also consistent with the qualitative aspects of the other three parts of Fig. 2. It is

noteworthy that even the velocity pdf, which is usually assumed to be dominated by

large-scale events, is slightly affected by low resolution. The sub-Gaussian character
of that distribution has been observed by other investigators at different Reynolds

numbers, and is believed to be real (Anselmet et al. 1984, Vincent and Meneguzzi

1991).
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(a-c) Pdf's of velocity and velocity gradients, Rex = 66 . Lines are as in Fig. 1

and symbols in (c) are the Gaussian distribution. (d) Dependence of the velocity
gradient flatness factors on Ax/r} = 7r/kmaxr I. All moments are normalized with

their value at kmaxr/= 2. o : Fat, zx : F4t, u : F6t, o : F4t, v : F6t. Solid symbols

are Rex = 66, open ones, Rex = 92.

3. Probe size effects

The resolution effects documented above represented a more strict test titan the
effect of observing the flow with a probe of finite size. While in the former case the

dynamics of the small scales are presumably disrupted by the lack of resolution,

that is not true in the latter, in which the only effect is a smoothing of "properly

computed" quantities. The classical model for the effect of a hot wire of finite length
is that in (Wyngaard 1968). It is assumed that the hot wire is only sensitive to one

velocity component and that it averages the true velocity signal along its length. No
other measurement errors are considered. Whenever a spatial derivative is needed,

it is computed as a centered difference from the signal at two neighboring wires. If

homogeneous turbulence is assumed and the velocity is represented by its Fourier

components,

u(X) = E ak e ik'x,

the averaging effect of a hot wire of length h, oriented along z, is equivalent to
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tion. Lines correspond to h/r I = 0(1.5)7.5, in order of decreasing intermittency of

distributions. Rex = 92. (a) Filtered transversal derivatives of filtered velocity. (b)

Filtered longitudinal derivatives of filtered velocity. (c) Filtered velocity. (d) True

longitudinal derivatives of filtered velocity.

multiplying each Fourier components by a filter (Wyngaard 1968)

sin(kzh/2)
F(k) - kzh/2

In the same way, the effect of taking a derivative over a finite distance h is equivalent

to multiplying the Fourier components of the derivative by the same filter function

(Wyngaard 1969).
We applied this procedures to our numerical fields, using for each Reynolds num-

ber the highest available resolution. First the "wire" was oriented along the x-axis
and used to obtain filtered values for v and w. The transverse derivatives, Ov/Oz

and Ow/py, were obtained by filtering the derivatives obtained from the filtered
velocities. This was intended to model the effect of two parallel sensors of length

h spaced by the same distance. The longitudinal derivatives, Ov/Oy and Ow/Oz,

were obtained in two different ways. In experimental practice these derivatives are

usually not derived from two separate sensors, but deduced from a single time trace
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FIGURE 4. Dependence of the velocity gradient flatness factors on the experimental

resolution. Left: Filtered derivatives of filtered velocities. Right: True longitudinal
derivatives of filtered velocities. Symbols as in Fig. 2d.

using Taylor's approximation. Without taking into account the errors introduced

by that procedure, it is in principle possible to sample the time trace fast enough

to obtain "true" time derivatives of the signal. The sampling rate is limited by

factors such as thermal inertia of the hot wire, seeding density in an LDV signal,
or electronic limitations, all of which are essentially unrelated to sensor size. Two
sets of longitudinal derivatives were thus obtained. The first one contains "true"

derivatives of the filtered velocities, while the second one uses filtered derivatives

with a sampling interval h, to make them comparable to the transversal gradients.
The whole procedure was repeated with the "wire" oriented along the V and z axis,
and pdf's were compiled for all the quantities. The results, as a function of sensor

length relative to the Kolmogorov scale, are shown in Figs. 3 and 4.

There are several interesting aspects in those figures. First, as expected, the effect
of experimental averaging is somewhat milder than that of numerical underesolu-

tion, but the magnitude of the effect is different for the different moments. While

the degradation of the sixth order moments is comparable for a wire of length 8q

and for a grid pitch of 5r/, the third and fourth order moments are never degraded

too much by filtering and remain with 20% of their true values even for the longest
wire tested in our computations. Also, Wyngaard's criterion for wire length, h < 30,
is seen to be reasonable for the lowest order moments, but to lead to sizable errors
for the sixth order flatness.

Perhaps the most unexpected results of Figs. 3 and 4 is the very mild degradation

of the longitudinal gradients when only the velocities are filtered while the gradients
themselves are computed with spectral accuracy. This indicates that the extreme

tails of the pdf's are dominated by events, fronts, or filaments whose size in the

direction normal to the gradient is comparatively large. This is of course consistent

with modern observations of vorticity filaments in turbulent flows and suggests

that reasonably accurate measurements of longitudinal gradients can be obtained
by rapid sampling of velocity signals from fairly large sensors.

Another totally unexpected result was the tendency in Fig. 4b for the skewness
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of the longitudinal derivatives of the filtered velocity to increase with the size of the

filter. We have no explanation for this puzzling phenomenon, although it brings to

mind the recent observations of persistent skewness in passive scalar fields associated

with sharp fronts whose scale is similar to the integral length of the flow (Holtzer

and Siggia 1994, Pumir 1994).

4. Conclusions

We have shown that the numerical resolution needed to simulate isotropic turbu-

lence to the level of the sixth moment of the velocity gradient probability distribu-

tions is Ax/_ ,_ 1.5, for properly de-aliased spectral simulations at Rex ,_ O(100).

Using post-processing filtering of fully resolved numerical fields, we have shown

that the classical limit on the size of experimental sensors (37/) is sufficient for third

or fourth order moments of longitudinal or transverse velocity gradients, but that

the sixth order moments require shorter wires. It is shown that most of the degrada-

tion in the higher moments results from the discretization of the differential operator

and that fairly accurate longitudinal gradients can be obtained from large sensors

by rapidly discretizing the time signal. As the discretization distance is extended

into the inertial range (h/_ _ 10), the computation of the gradients merges into

that of the normalized structure functions (see Anselmet et al. 1984, for a review),

whose variation with distance is associated with the intermittency properties of the

turbulent field. Our experiments show, however, that the degradation of the higher

moments (n < 6) is substantial even when the discretization distance is kept in the

dissipation range.

Finally, we have observed that the skewness of the filtered fields tends to increase

with decreasing resolution, suggesting a large-scale origin for this quantity.
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A method for obtaining a statistically
stationary turbulent free shear flow

By S. F. Timson, S. K. Lele AND R. D. Moser

1. Motivation and objectives

The long-term goal of the current research is the study of Large-Eddy Simulation

(LES) as a tool for aeroacoustics. New algorithms and developments in computer

hardware are making possible a new generation of tools for aeroacoustic predictions,

which rely on the physics of the flow rather than empirical knowledge. LES, in con-

junction with an acoustic analogy (Lighthill 1952), holds the promise of predicting

the statistics of noise radiated to the far-field of a turbulent flow.

While there have been preliminary studies where LES was used in aeroacoustic

calculations, a thorough examination of LES's predictive capabilities has not been

undertaken. Recent advances in subgrid-scale models (Ghosal et al. 1992) have

shown promising results, but accurate acoustic predictions present a far more strin-

gent test of LES's fidelity. LES does not resolve all scales in the simulated flow, and

results of a given simulation depend on the subgrid-scale model employed. Previous

verification of LES results has focused on one point statistics. The application of

an acoustic analogy requires a two point space-time correlation, and it is unclear

how accurately LES will reproduce this quantity.
It has been shown that the dominant features of far-field noise are associated with

the energy containing range of scales in the near-field, offering hope that LES can

supply accurate predictions. However, in practical applications, the subgrid-scale

energy can represent a significant fraction of the total. Further, as Crighton (1988)

points out, care must be taken when applying acoustic analogies. Computation-

ally, spurious but efficient low order acoustic sources may result from discretization

errors, boundary conditions, etc. It is important to assess whether or not the

subgrid-scale model acts as such a low order acoustic source.

LES's predictive ability will be tested through extensive comparison of acoustic

predictions based on a Direct Numerical Simulation (DNS) and LES of the same

flow, as well as a priori testing of DNS results. The method presented here is aimed

at allowing simulation of a turbulent flow field that is both simple and amenable to

acoustic predictions. A free shear flow that is homogeneous in both the streamwise

and spanwise directions and which is statistically stationary will be simulated using

equations based on the Navier Stokes equations with a small number of added terms.

Studying a free shear flow eliminates the need to consider flow-surface interactions

as an acoustic source. The homogeneous directions and the flow's statistically sta-

tionary nature greatly simplify the application of an acoustic analogy.

2. Accomplishments

A method allowing simulation of a statistically stationary free shear flow has been

developed. The method is an extension of that presented by Spalart (1988) to the
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case of a wake or coflowing jet in the small deficit limit. The results are similar to

those for the sink-flow boundary-layer presented in Spalart (1986). The derivation is

more rigorous than either of the above analyses due to the simplification introduced

by explicitly considering the small deficit limit. Some limited testing of the method

has been carried out, and a more detailed validation is in progress.

2.1 Mathematical formulation

The flow to be simulated is that of a plane wake or cofiowing jet. Self similar

behavior is assumed and forms the basis for the rest of the analysis. The classical

conditions necessary for self-similarity in a plane wake (in the small deficit limit)

are

(1)
1 1

yo ,/7 (2)

where _ is the wake thickness, Uo = Aumax is the maximum velocity deficit, and x

denotes the streamwise direction.

A coordinate transformation is defined such that

(x,y,z,t) ---* (x,_,z,t) (3)

where _ = y/_(x). The spatial coordinates have been normalized by some initial

length scale Lo, and time is normalized by some initial time scale to. Thus all

quantities are non-dimensional. In the new set of coordinates, the profile thickness

is independent of x. Lines of constant y have slope S where for the above coordinate

system
d_

S = r/_xx . (4)

The Jacobian of the coordinate transformation in space may then be written

J = T (5)

0

where T = 5 for the coordinate change given in (3). The actual Jacobian is a

4x4 matrix, but as no transformation is carried out in time, the extra elements are

deleted for simplicity.

Following Spalart (1988), a transformation is made to the dependent variables as

well. Let the Cartesian velocity components be denoted by (u*, v*, w*), then the

contravariant velocity components will be denoted by (fi, _, tb). The two sets are

related through j-l, giving

(00)(.)= 1 0 v* .

0 1 w*
(6)
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Use of the contravariant velocity components preserves the form of the transport

terms in the new coordinate system, i.e.

u,O v.O 0 =rio _0 _0
_+ _+w'-y;z _+ _+ _.

(7)

As Spa/art shows, the continuity equation becomes

fix + _. + _bz + -_-u + _-v = O. (8)

The x-momentum equation becomes

S

fit + fifix + vfi_ + tSfiz = -Px + -_P_

1 (( __ 2SS. (I+S2)T_)+Re - + T 2 T a fir +fizx

1 + S2 . 2S ~

+ _u._ - --_u_ n + rL_) .
(9)

where p is the kinematic pressure.
Normalized velocity components are introduced, and the equations are expressed

in terms of the velocity deficit. The variable change is

_(x,v,z,t))
_(x, 7, z, t)
_(x, 7, z, t)
p(x, 7, z, t)

/ Uo_+ Uo(x),,(x, '7,z, t) \

i Uo(x)v(x,_,z,t) ) (10)--* l uo(z)w(z,,7, z,t)
\ v_o(_)p(z,,1,z,t)

The maximum deficit is used to scale the velocity components so that the mean

and r.m.s of the velocity components are independent of downstream location in

the new coordinate system.
The resulting equations are not presented as they are quite cumbersome. One

should note that new terms involving x derivatives of the velocity scale are intro-
duced. These terms are recast in terms of the undifferentiated velocity deficit using

the assumed self-similar streamwise evolution. Using Eqs. (2) and (4) and recalling

that T = _, it can be shown that

dUo S. (11)
dx - -_ Uo,

and

d2U° - ( 9S_-d_"T 2 Sx") U°'T (12)

The equations are further simplified by choosing the length scale Lo to be 6o, the

dimensional value of the layer thickness at the downstream station to be simulated.
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Tiffs implies the dimensionless quantity (5 is 1. Then T = 1, q derivatives of T are

zero, and x derivatives are removed through the identity

T= = S,,. (13)

Further, if 6 is unity, 0 and y become equivalent, and all instances of q in the

equations may be replaced with y. Then defining the parameter

UO

= u-Z' (14)

the continuity equation becomes

Sy

-- -t- u_: + vy + w. =0.

The x-momentum equation becomes

(15)

ut + uuz + VUy + wuz

+ (ux Syue Syu2) = -px + Spy + visc°us terms" (16)

The viscous terms are quite complicated and are omitted for simplicity.

A Galilean transformation is now applied. A new coordinate x I is defined such
that

x' = x - Uoot. (17)

Applying this transformation, the terms in the momentum equations resulting from

convection at Uo_ (e.g. the u=/e term in (16)) vanish.

The slope of the new coordinate lines S will now be expressed in the new coor-

dinate system. Returning to the unmoving coordinate system, using (2) and (4) it
can be shown that

2 dx Y" (18)

A quantity that was only a function of x in the stationary frame becomes a function

of both x' and t in the moving frame, i.e.

F(x) = F(z' + Uo_t).

Differentiating with respect to time in the new frame shows

(19)

1 OF dF
---- =F'=-- (20)
Uoo _ dx"

Applying (20) to (18) gives S in the new coordinate system as

--_-_ ey. (21)
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A parameter a is defined by

a- 2 0 t

and the scaling of Uo in (2) implies that a is constant. It follows that S = aey.
The small deficit limit is then enforced, letting e ---* 0, giving for the continuity

and momentum equations
V. ff = -a, (23)

and

fft+w×ff=-VP+a -v + V2ff. (24)

w

These are the equations that will be integrated to yield the turbulent flow field. Note

that (20) indicates that V = -ay, and that the fluctuating velocity components

are divergence free. Also note that all added viscous terms dropped out when the

limit was taken.

_. _ Implementation

The modified equation set was implemented in the spectral code used by Rogers

and Moser (1993) in their study of self-similar turbulent mixing layers. The nu-

merical method (Spalart, Moser and Rogers 1991) employs Fourier analysis in con-

junction with periodic boundary conditions in both the streamwise and spanwise

directions. The application of periodic conditions in the streamwise direction is an

approximation as the length and time scales for the fluctuating quantities are x de-

pendent. The approximation should be a good one for the normalized components

in this coordinate system as the variation of these scales is slow compared with the

variation of 5. The non-homogeneous direction is handled through the use of rapidly

decaying spectral basis functions in conjunction with two slowly decaying additional

functions that exactly represent the irrotational component of the solution far from

the vortical region.

The major question in implementing the modified equations is how to evaluate a.

An initial value may be calculated for a by taking the second moment of the mean

x-momentum equation, setting Ut to zero, and solving for a. Making use of the fact

that the mean field is a function only of y, and integrating by parts, discarding the

boundary terms, gives

f × + (25)
a = f y2Udy

This value is then held, and the mean flow is allowed to evolve until a statistical

steady state is reached. The flow in the interim has no physical meaning.

It may appear that a similar scheme may be used to constantly update a as

the flow is evolving, in effect setting c_ to the value it would have if the flow was

stationary at that moment, hopefully speeding evolution to the stationary state. In

practice, however, this presents problems. It appears that a feedback loop involving
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the Reynolds stresses results. Further investigation in this area is clearly needed.

For the present work this is not critical as the initial conditions to be used are fully

developed wakes simulated by Moser and Rogers (1994). Calculating a based on the

initial condition and fixing it should not result in a significant evolutionary period.

2.3 Testing

The first test case was a laminar wake. The initial condition was simply a Gaus-

sian. The flow evolved into a shape that was nearly Gaussian (a Gaussian does not

solve the modified equation set) and remained stationary. A second test consisted

of an initial condition of y: times a Gaussian, such that the profile had the same

mass flow and second moment. The flow evolved to the same steady solution as was

reached starting with a Gaussian.

The first turbulent test case is that of a low Reynolds number turbulent wake.

This test is currently underway. The initial condition was taken from a temporally

evolving simulation done by Moser and Rogers (1994). The results will be compared
qualitatively to the results obtained from the temporal simulation to ensure that

the results produced by the modified equation set are reasonable.

3. Future plans

Upon completion of the testing with the low Reynolds number wake, a higher

Reynolds number DNS will be carried out, building the database necessary for

aeroacoustic predictions. A priori testing of the DNS results will be carried out,

comparing the acoustic prediction from the DNS data and a filtered version of the

same flow-field. It has been seen previously that LES simulations are capable of

producing better results than indicated by a priori tests. Therefore, the code will

also be modified, and an LES of the same flow will be carried out. Using these

databases, the issues discussed in section 1 will be investigated.
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Direct numerical simulation of

incompressible axisymmetric flows

By Patrick Loulou 1

1. Motivation and objectives

In the present work, we propose to conduct direct numerical simulations (DNS)
of incompressible turbulent axisymmetric jets and wakes. The objectives of the

study are to understand the fundamental behavior of axisymmetric jets and wakes,
which are perhaps the most technologically relevant free shear flows (e.g. combuster

injectors, propulsion jet). Among the data to be generated are various statistical

quantities of importance in turbulence modeling, like the meart velocity, turbulent
stresses, and all the terms in the Reynolds-stress balance equations. In addition,
we will be interested in the evolution of large-scale structures that are common in

free shear flows.
The axisymmetric jet or wake is also a good problem in which to try the newly

developed b-spline numerical method. Using b-splines as interpolating functions in
the non-periodic direction offers many advantages. B-splines have local support,
which leads to sparse matrices that can be efficiently stored and solved. Also, they

offer spectral-like accuracy and are C °-1 continuous, where O is the order of the

spline used; this means that derivatives of the velocity such as the vorticity are
smoothly and accurately represented. For purposes of validation against existing

results, the present code will also be able to simulate internal flows (ones that require

a no-slip boundary condition). Implementation of no-slip boundary condition is
trivial in the context of the b-splines.

2. Accomplishments

To simulate these flows, we follow the procedure described in Moser et al. (1983)

and Leonard et al. (1982), with b-splines replacing the 3acobi or Tchebyshev poly-

nomials used in the radial direction.

2.1 Navier-Stokes equation

The starting point for the simulations are the incompressible Navier-Stokes equa-

tions:

0u 1
- u × _ = -VP- _u (la)

v..=0 (lb)

Let v be our numerical approximation to u, which will consist of a truncated

expansion in terms of divergence-free vector functions (i.e.V. v = 0). Furthermore,

1 Department of Aeronautics and Astronautics, Stanford University



374 Patrick Loulou

let _ be any vector function representable by another finite set of divergence-free

vector functions (V.( = 0), satisfying ( = 0 on OG, the boundary of the domain. By

substituting v for u in (la) and using the standard weighted residual technique with

as the weight functions, we obtain the discrete weak form of the Navier-Stokes
equations.

/o 1£(. dV- (. v x wdV - Re (. AvdV (2)

By enforcing (2) for each ( making up a basis for the weight functions, a coupled

system of ordinary differential equations for the coefficients in the expansion for v

are obtained, which can be solved using standard time-advance techniques (see sect.

3). This formulation has the advantage of automatically satisfying the continuity
equation (lb) and eliminating the pressure.

g.2 Velocity representation and vector shape function_

Given the formulation in (2), all that remains is to select the basis vectors to

represent v and _. This is facilitated by approximating the spatially developing jet

or wake of interest as a time developing flow. In this case, the streamwise (axial or

z) direction is homogeneous and we can approximate the flow as periodic in z with

period L,. This and the natural periodicity in 0 allow the following representation
of v and _:

where

v(., 0,z,t) = j, k.)e"e'*."
j k_ I

I i *t_ .. ,
_j,m,p(r,O,z) = wv(r;j',kz )e- J " e-*"" z

(3)

(4)

27Tin

k:- L: ' -J<jNJ, -M_m_M

Due to the continuity constraint, there are only two degrees of freedom associated

with each Fourier/b-spline mode. It is therefore convenient to divide the expansion

and weight vectors, ut and wt,, into two distinct classes of vectors (ul + and ut-)

and (w/, + and wv-), with coefficients a+mt(t) and a;m/(t ).

The expansion and weight vectors must be constructed such that they are di-

vergence free and have the proper regularity properties at r = 0 (Shariff 1993).

The following vectors meet both these requirements provided that gt(r) satisfy the
appropriate condition at r = 0 (see below):

ui+(r;j, kz) -- ,u.+t ] :Vx ) _ gi_r)") , .,-: . (5)

we+(r;j',k/) = _* × _* ×
-ige(r) _ [ igt,(r) )

(6)
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where V x is the Fourier tranformed curl operator and V* x is its complex conjugate.

The gt(r) axe b-splines expansion functions as described by de Boor (1978).

The above representation is incomplete when k_ = 0; so in this case, the following

special representation is used:

(°0)u,+ = gI(_) , u,- = (7)
0 g_(_)

(°0)w,,+ = 91,it) , w,,- = (8)
0 gt,(r)

And when j = 0, these vectors axe incomplete; so for that case (kz = j = 0), we

use:

(0)u_+= gl_r) , ul-=

(0)wl ,+= gt, r) , wt,-= 0 (10)

All these additional vectors are also divergence-free and satisfy the regularity re-

quirement.

In order to have the correct regularity property, depending on the azimuthal wave

number j, gt(r) and some of its derivatives (Shaxiff 1993) must vanish when r = 0.

Since this is not automatically satisfied by all the b-splines, some of the coefficients

(a + and a-) must be zero. In particular, for j > 0

a + =0, 1 <l<min(O,j)+l or lj is odd, while j+3<l<O+l

and

a_-=0, l<l<min(O+l, lj-1]) or lj odd Ij-ll+2<l<O+l

but with a_- unconstrained.

2.3 Boundary conditions

The present method is designed to treat both no-slip boundaries and potential

boundaries (free shear flows).

2.3.1 No-slip boundary condition

Enforcing the boundary condition that ut(R2) -- 0, where R2 is the outer edge of

the domain, requires that
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gt(r = R2) = O, g;(r = R2) = 0 (11)

But if the gl are the b-splines as defined by de Boor, (11) is not satisfied for l = L

or l = L - 1 (the two functions closest to the boundaries). Therefore, we impose

= t-i =0
However, for the shape functions in (5), (11) also implies

(12)

Otto
-0

Or (13)

at the boundary, which is too restrictive. To alleviate this, we augment (5) and (6)

with the additional vectors (Moser et hi., 1983):

U__ 1 --2kzgL-l(r) , w_-i t= = rgL_ (r) + gL-,(r) (14)
2igLoo(r) 0

With this, Ouo/Or is unconstrained at the boundary.

2.3.2 Potential boundary condition

When simulating free shear flows, we follow the approach of Corral et al. (1993)

and Sondergaard et al. (1994), where it is assumed that the vorticity in the flow is

confined to a small region (r < R,_) which is to be computed. In the outer region

of the flow (r > Rw), the vorticity is zero, so the velocity is a potential (u = V¢

and A¢ = 0).

For each Fourier mode, the potential q_ is given by:

$(r;j,k,) ~Kj(kzr)

where Kj(x) is the modified Bessel function of the second kind. At the boundary of

the computational domain, r = R2 > R_, the following relations are satisfied since

u is a potential:

ij ik:
uo = -_R-_U,., uz = --ur, where q = k_ K'j(k_R2)

q 2 q Kj(k_R2)

In addition, for the vorticity to be zero at r = R2, u_ must satisfy

Our -K'j(k:R2)

7-_r + Ur = 0, where 7 = _)

(i5)

(16)

Given the representation in (5), to satisfy (15) and (16), the coefficients must satisfy:

o_+[q--_2+l]+c_[q--_2-1] =0 (17)
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[

+ - + [1+

where we made use of the following identities:

1],- = 0 (18)
"YgL(R2

1 1 j2 kz2
gL(R2) = I, g'L_I(R2) = --g'L(R2),

_/ R2 qR_ q

There are three boundary conditions in (15) and (16) but they are redundant

with the continuity equation at the boundary. Since continuity is built into our

expansions, only two conditions (17) and (18) are required.
For the kz = 0 case, the conditions in (15) and (16) are satisfied when:

a; =0 (19)

[ J]a+_l-a + 1 + R2gTL(R2) =0 (20)

3. Future plans

The only major parts of the code that remain to be implemented are the time

integration scheme and the non-linear convective term. To time march the equa-
tions, we propose to use the method of Spalart et al. (1991) which is a mixed

implicit/explicit scheme. The linear viscous term is time-marched implicitly using
a Crank-Nicholson scheme and the non-linear terms are time-marched explicitly

using a third order Runge-Kutta scheme. To compute the non-linear term, we
revert back to physical space, take the cross product, integrate exactly by Gauss

quadratures (doing the integrals exactly takes care of aliasing), and revert back to

wave-space.
There are two types of free shear flow simulations that are of interest. First, a

fully turbulent jet that can be simulated using a turbulent pipe simulation result

as the initial condition (obtained from the same code). This is similar to the tur-
bulent mixing layer and wake simulations of Moser and Rogers (1994). Second, a

transitional jet or wake simulated using different initial conditions, similar to the

work of Sondergaard et al. (1994) on wakes.
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Database post-processing in Tensoral

By Eliot Dresselhaus

The CTR post-processing effort aims to make turbulence simulations and data

more readily and usefully available to the research and industrial communities. The

TensorM language, introduced in this document and currently existing in prototype

form, is the foundation of this effort. TensorM provides a convenient and powerful

protocol to connect users who wish to analyze fluids databases with the authors

who generate them.

In this document we introduce Tensoral and its prototype implementation in the

form of a user's guide. This guide focuses on use of Tensoral for post-processing tur-

bulence databases. The corresponding document -- the TensorM "author's guide"
-- which focuses on how authors can make databases available to users via the

TensorM system -- is currently unwritten.

Section 1 of this user's guide defines Tensorars basic notions: we explain the

class of problems at hand and how TensorM abstracts them. Section 2 defines Ten-

sorM syntax for mathematical expressions. Section 3 shows how these expressions

make up TensorM statements. Section 4 shows how Tensoral statements and ex-

pressions are embedded into other computer languages (such as C or VectorM) to

make Tensoral programs. We conclude with a complete example program.

1. Basic notions

Post-processing in the abstract

The post-processing of fluids data entails computing quantities derived from base

quantities such as the velocity vector field if(aT, t), scalar field ¢(_, t), or vorticity

field oT(Z, t) = _7 × ft. Base quantities are those found in the databases output by

simulation codes and may vary from simulation to simulation. Derived quantities

are typically those commonly arising in theories of fluid mechanics, turbulence,

and in practical problems such as velocity profiles, Reynolds' stresses, probability

densities, etc.

The canonical post-processor starts with one or more base fields, computes one or

more derived quantities, and outputs the results of these computations. An example

post-processor might, given a velocity field, calculate pressure, strain, vorticity,

strain times vorticity, mean and mean square velocity, Reynold's stresses, or skin

friction, and generate tables or graphs of these quantities. In general terms, post-

processing involves calculus and statistics applied to numerical tensor data.

1.1 Tensoral in the abstrac_

Tensoral has been designed to apply to a very general class of numerical problems.

Tensoral applies whenever it is useful to separate the high-level coding and low-level

implementation of calculus and statistics operations on numerical data. Applied to
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turbulence databases Tensoral programs can flexibly and efficiently serve as post-

processors. This user's guide will focus on such post-processing applications of the
TensorM language.

Tensoral, like other computer languages, provides abstractions to aid the user in
understanding and using the system. There are three basic abstractions in Tensoral:

a type of variable called a tensor, operators which operate on tensors and produce
new tensors, and a general and programmable notion of state in which tensors exist

and in which operators act. These basic abstractions when combined make up the
description of a data type which is defined by an author's back-end.

1.2 Tensors

All mathematical quantities in Tensora/ are represented by tensors. Tensora]

tensors correspond (loosely) to mathematical tensor fields. They are more use-

fully thought of as "computational" tensors -- that is, as indexed numerical arrays

(e.g. a_ij (xyz)) with two sets of indices: a set of tensor or array indices (ij) and

a set of coordinate indices (xyz). Each coordinate value (e.g. (xyz)) corresponds
to an array of numbers (e.g. a_ij ) which may or may not be indexed like a mathe-
matical tensor.

1.3 Operators

Mathematical and other operations on tensors are represented by Tensora/op-

erators. Certain standard operators are invoked by elements of Tensoral syntax
(e.g. a+b invokes the addition operator). Non-standard operators may be introduced

by back-end authors to extend the functionality coded into Tensoral syntax. Stan-

dard operators in Tensora/include tensor assignment, algebraic operations (addi-
tion, subtraction, multiplication, division, exponentiation), differentiation, integra-

tion, and averaging. Tensoral also provides standard operators for the reading and
writing of files in various formats. Standardization is intended to allow mathemat-

ically similar operations to be coded with the same syntax even if such operations

have different back-end numerical implementations. Ideally, such standardization

would allow post-processing codes for different back-ends to be identical. In addition

to standard operators Tensorad provides a highly flexible mechanism for integrating
new operators into the language. Such operators, as well as re-implementations of

standard operators, may be provided at will by database authors.

Typically Tensoral operators apply to tensors as arrays: that is, they apply to all

tensor (or array) indices and coordinate indices unless explicitly instructed other-

wise. Thus, Tensoral is an array language. Adding two tensors, for example, adds

array values for all tensor indices and at all spatial points (i.e. grid points) defined
for a given simulation. Explicit tensor or coordinate indices can be specified with

tensor indexing and coordinate indexing.

The implementation specifics of tensors and (potentially all) operators that act
upon them are also provided by database authors. The numerical representation

of an abstract tensor (e.g. as an array in memory, across processors in a multi-

computer, split between memory and disk, etc.) and how operators operate (e.g.

derivatives as finite differences or as multiplication in wave space, etc.) is completely
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determined by a database author's back-end. Such back-ends provide all of the in-

formation necessary for the Tensoral compiler to convert high-level post-processors

into an executable computer programs. Back-ends and especially back-end pro-

gramming will not be covered in this document.

l.J State

Every tensor at every stage in a computation is in a certain state. This state con-

trois how back-ends represent tensor references and operations on them in terms

of executable computer code. The state of a tensor is represented by a set of state

variab]es taking a specified set of values (possibly Boolean true or false, integer,

floating point, string, or otherwise). For example, each tensor has pre-defined inte-

ger valued state variables rank and dim which respectively define the number and

range of tensor indices that may be validly used to index a tensor. Thus, a_ij is
valid reference to a rank 2 tensor with indices ± and j taking integral values from

1 to dim, the dimension of a (which must be an integer). Similarly, a tensor's co-
ordinate dependencies are given by a built-in state called dep. Such dependencies

change when variables are averaged over or new coordinates are introduced in an
expression.Thus, the tensora_ij(xyz) has state'[rank 2, dim 3, dep xyz]"--

we shalluse thisnotationthroughoutto denote statevariables(hererank,dim and

dep) with values(here2,3 and xyz) of a tensor'sstate.Other statevariablescan

be introducedat willby database authorsto encode specificationof a simulation's

grid,how a tensoriscurrentlybeing represented(e.g.in physicalor wave space),

the stateand type ofa tensor'sdata management (e.g.three-dimensionaltensorin

xy planes),etc.

2. Expression syntax

Tensoral syntax is introduced here from bottom to top. First we show how to
reference tensor variables. Tensor references are the building blocks of mathemat-

ical expressions. Such expressions are themselves the building blocks of Tensoral

statements. TensoraJ statements may introduce new tensors, assign tensors to ex-

pressions, read and write files, perform back-end specific operations, etc.

2.1 Tensor variables

Tensor references -- for example, a_12(xyz) -- have up to three components: a

required tensor name a, optional array (tensor) indices _12 and optional coordinates

indices (xyz). The notation a_12(xyz) corresponds to the mathematical notation

aij(£) for a tensor field of rank 2. Both array and coordinate indexing specialize a

tensor reference. That is, a refers to a_i(_ ) for a11 indices ij and spatial points _;

a_12 refers to a12(_) for all spatial points _; a_12(x=10) corresponds to all values of
a12(10, y, z) for all y and z. Array and coordinate indexing will be detailed below.

Tensor variable names are given by sequences of lower and upper case letters,
underscores _, and primes ' Digits may also be used in tensor names but not

as the first character. The following are all valid distinct tensor names: u, U, v',

velocity, ul, ul', long_name, str' ange_na'me. Tensor indices are introduced by
the final _ character in a tensor name, but only if the preceding characters actually
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refer to a tensor variable. Thus, long_name_ij either refers to an unindexed tensor

named long_name_ij or refers to the ij component of a tensor named long_name

depending on which alternative has been declared to be a tensor variable.

2.2 Coordinates

Coordinates are notated by single lower or upper case letters, optionally followed

by prime ' characters. Thus, the following are valid and distinct TensorM coordi-

nates: x, y, z, x', X, X', r, k -- as long as they have been provided for by back-end
authors.

Tensors may depend on any unique combination of coordinates -- as long as

they have been defined by a back-end. A back-end author can provide various

coordinate systems for a single simulation as appropriate and physically meaningful.

For example, coordinates on a Cartesian grid are typically

x y z Cartesian coordinates x, y and z,

r the radial coordinate r 2 = x 2 -+-y2 nt_z 2"

Coordinates in Tensoral are special tensors of (rank 0) which depend on them-

selves and when referenced in expressions generate corresponding coordinate values.

The values taken on by coordinates are defined by back-end authors. Thus, a z co-

ordinate might go from 0 to 27r for isotropic turbulence and from 0 to oc for a

boundary layer.

2.3 Tensor indexing

Tensor indices, introduced by the underscore character _, consist of a sequence

of coordinates or single digits or dummy indices (explicit indexing) or may not be

present at all (implicit indexing).

Explicit index values (e.g. a_12 or a_xy) may be either digits or coordinates. No

spaces are allowed before or after indices or the leading _: indexed expressions are

atomic variable references which contain no white space. If a coordinate c is used to

index a tensor, the tensor must depend on c (i.e. c must be present in the tensor's

dep state) -- otherwise a compiler error is issued; the value of a coordinate index is

the position that c takes in the dependency state of the tensor. The value of a digit

index is the specified number between i and dim (the tensor's dimension). Thus, if

a has {rank 2, dep xyz} state, then a_12, a._xy, a_ly, and a_.x2 are all valid and

equivalent indexed expressions.

Any tensor index which is not a digit or a coordinate direction (as defined in a

particular simulation back-end) is assumed to be a dummy index. Dummy indices in

Tensora/aim for the same semantics as in standard mathematical tensor notation.

Thus, a dummy indexed expression a_ij (assuming neither i or j are coordinates)

refers to all 9 components of a (assumed to be {rank 2].). Dummy indices label

how tensor indices are to be repeated and combined in an expression -- for ex-

ample, distinguishing the assignment statements a._ij - b_j c_i and a_ij = b_i

c_j. Dummy indices are also used in conjunction with the summation convention:

namely, that repeated dummy indices in a product axe summed over. We defer

further details of dummy indexing until we introduce the operators which control

their interpretation.
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Tensor references need not have explicit indices; they may be indexed implicitly.

If indices are not specified, dummy indices are introduced in a standard way. Cur-

rently, this standard has not been fully decided upon. The user is encouraged (for

now) to use explicit dummy indices.

2.,_ Coordinate indezing

Indexing is also supported for the coordinates a tensor depends on. A tensor u

depending on coordinates xyz can be evaluated at particular x, y or z values -- for

example, at x = 17 planes with u(17,y,z) (or equivalently, u(xffi17)), at x = 17,

z = 69 pencils as u(17,y,69) (or u(xffilY,zffi69)), or at a single point x = y = z = 0

as u(0,0,0) (or u(x=yfz=0)). If a coordinate is either not specified or is specified

only by name (with no explicit value given), this coordinate is assumed to take on

all possible values. Thus, u(17 ,y,z) refers to an array indexed by coordinates yz.

2.5 Algebraic notation

Mathematical notation in Tensoral is a super-set of VectorM notation and as with

Vectoral aims to present a syntax as close as possible to standard mathematical

notation. Numerical constants (which are tensors of rank 0 with no coordinate

dependencies) are entered as in VectorM: as sequences of base ten digits and optional

decimal point, followed with an optional e or E for exponent and optional i or I for

the imaginary unit (_/'L']-). Numerical constants can be thought of as tensors with
zero rank and no coordinate dependencies (i.e. state (rank 0, dep 0}). Given

expressions a and b, we have the following operators:

a+b, a-b addition, subtraction,
a/b division,

a b, a.b, a,b, multiplication: juxtaposition, dot, star

a" b exponentiation,

aS complex conjugate,

-a negation,
[a I absolute value.

Any balanced parenthesis ((), O or []) may be used for grouping mathematical

expressions. These operators -- like most operators in Tensoral-- apply to tensors
as arrays: that is, they apply to all array and coordinate indices which have not

been explicitly specified.
Precedence of operations in the above table increases from left to right, top to

bottom. To avoid ambiguity between a-b being subtraction (a-b) and juxtaposition

(a) (-b) negation is not allowed with juxtaposition: juxtaposition may be used,

however, with all other operators of lower precedence. Also, all non-commutative

operations (i.e. subtraction, division, multiplication of tensors, and exponentiation
are left-associative. Thus, the exponentiation a^b^c is grouped as (a'b)'c, etc.

2.6 Three types of multiplication?

There are three types of binary multiplication in TensorM: star *, dot . and

juxtaposition (which has no symbol). These three forms of multiplication differ in

how they treat array indices.



384 Eliot Dvcsselhaus

Explicitly indexed, . and juxtaposition both imply the summation convention --

that is, repeated indices are summed, for example making a_ij b_j or a_ij b_j

equivalent to matrix multiplication. Explicitly indexed multiplication with * does

not sum repeated indices: Thus, u_i * u_j is the outer (tensor) product of u with

itself. This convention roughly corresponds to the usual tensor notation: is an

inner (dot) product (contracts indices) and * is an outer (tensor) product.

In connection with use of the summation convention, Tensoral provides the stan-

dard tensors delta and epsilon, delta_ij is the totally symmetric unit tensor

(Kronecker delta) and epsilon_il.., iN is the totally anti-symmetric unit tensor:

equal to 1 for even permutations of 1... N, -1 for odd permutations, 0 otherwise).

Here are some illustrative examples of explicitly indexed multiplications:

c_k = epsilon_ijk a_i b_j

c = a_i b_i

c_ik = a_ij b_jk

c_ij = a_i * b_j

cross product of rank 1 a and b.

dot product of rank 1 a and b.

matrix multiplication of rank 2 a and b.

outer product of rank 1 a and b.

(Implicit indexing will in the future be different for the three multiplications. The

details of this difference is currently unresolved and are not given here.)

2.7 Operator notation

Algebraic operations and mathematical functions (e.g. sine, cosine, log, exponen-

tial), differentiation, Laplace inversion and curl operator inversion, among others,

all invoke TensorM operators. Such operators which are a part of standard Tensored

syntax, as well as those that are non-standard, can all be invoked explicitly with

operator notation.

Operators in Tensoral act from the left and apply to operand expressions on the

right. Operands are flanked by parentheses (one of (), {} or []), and operands
beyond the first are separated by commas as in standard mathematical notation.

Additionally, if an operator takes one or zero operands these parenthesis and com-

mas may be omitted so that the operator and operand are juxtaposed. Operators

are specially introduced to TensorM, so that it is possible to syntactically differen-

tiate operator notation (e.g. o or o(0,0,0) for operator o) from tensor references

(e.g. a or a(0,0,0) for tensor a). The following are examples of both types of

TensoraJ operator expressions:

sqrt(x) random sqrt x f(x,y) sqrt x + y

The last expression above is equivalent to sqrt(x) + y since juxtaposition of

operands has higher precedence than addition (and other operators in the above

table).

The standard mathematical functions in TensorM are as in Vectored and are listed

in the following table:

random A random number between 0 and 1,

conj z Complex conjugate,

exp z, log z, logl0 z Exponential, log, log base 10,
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sqrt z Square root,

sin z, cos z, tan z Trigonometric functions,

arcsin z, arccos z

arctan z Trigonometric inverse functions.

All functions taking arguments z in the above table may operate on either real or

complex quantities.

_.8 Calculus, statistics, indexed operators

Like tensors, operators also have state and, therefore, rank and can be indexed.

Standard indexed operators are:

grad numerical differentiation,

int numerical integration,

ave, sum averaging, summation,

rain, max minimum, maximum.

Differentiation grad mimics the gradient operator V: it has rank I and can

be explicitly indexed as if it were a tensor (e.g. grad_y u_x for ayu,). As with

products, the summation convention applies to repeated indices. In addition, a

special indexed shorthand is available for derivatives: any dummy indices following
a comma are taken as derivatives. Thus, u_i,j is short hand for grad_j u_i, and

v_j, ii generates the Laplacian V2vj.

The remaining indexed operators mentioned above do not have fixed rank. That

is, their operation is determined by how they are indexed. Consider ave as a typical

example, ave_x performs an average over the x coordinate direction (as defined by

the database back-end); ave_xy performs averaging over both x and y coordinate

directions. The remainder of the average-like operators (int, rain, max) behave in a

similar fashion: operator indices determine which coordinates are to be integrated

and minimized or maximized over.

_.9 Operators and back-ends

Currently, new operators may only be defined or re-defined (for standard opera-

tors) by back-ends. At some point the introduction of new operators will become
standard TensoraJ. The isotropic turbulence back-end J.so, for example, re-defines

the three product operators *,., and juxtaposition. For iso tensors, multiplication

can either be in physical or wave (Fourier) space. To select between these two pos-

sibilities, the back-end author (in this case E. D.) has defined * to imply wave space

and juxtaposition ... to imply physical space operands: that is, if any operand of *

is not in wave space it is transformed into wave space (and similarly for physical

space and juxtaposition). This mimics the notation f * g for convolution which, of

course, is multiplication in wave space. The third multiplication . implies nothing

about the wave and physical space representations of its operands.

3. Statement syntax

There are three kinds of statement in Tensora1: declarations, assignments, and

statement level operator expressions. Declarations introduce new tensors to the
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compiler. Assignments alter the value and state of existing tensors. Statement

level operator expressions -- whose syntax is identical to the operator expressions

described above -- allow for non-standard (i.e. back-end specific) operations to be
performed.

3.1 Declarations

As in Vectoral or C, all variables in Tensoral must be declared. A declaration

introduces a certain variable name (whose syntax is defined above) to be a tensor of

a certain type. The type of a tensor corresponds to a back-end which describes this

type. For example, the isotropic turbulence back-end defines a tensor type called

iso. Tensors may have more than one type. For example, an iso tensor a_ij may

be declared to be symmetric, indicating to the compiler that it may equate a_ij
with a_j i.

The type or types in a tensor declaration define all of the state variables which

may control how an abstract tensor is represented by a numerical tensor field. For

example, ±so tensors represent fields either in physical or in Fourier space and

have a corresponding state variable called wave which is true or false depending

on whether a given tensor is in wave or physical space at a given point in a pro-

gram. (This state variable could have more complex semantics to represent tensors

in mixed wave and physical space.) Other types may introduce other state vari-

ables or may override those already defined. For example, if a tensor is declared

symmetric iso, symmetric states and operators have higher precedence than iso

states and operators. (Such type precedence allows for back-ends to be constructed

in a modular fashion -- minimizing the duplication of effort.)

When a tensor is declared its initial state must also be declared. In particu-

lar, declarations may give values for the standard TensorM state variables rank,

dimension dim, and coordinate dependency dep. Other back-end specific state in-

formation may also be initialized, for example, declaring a tensor to have a certain

back-end specific mesh parameters, to be in wave or physical space, etc. All state

variables have default values. The standard states, for example, might default to

values (rank 0}, {dim 3}, and {dep 0}. Back-end specific defaults are provided

and documented by back-end authors.

The general syntax of Tensoral declarations is as follows:

type 1 ... type L {initl , ... , initM} tensor1 , ..., tensorN

This declares N > 0 tensors all having the specified L > 0 types with decreasing

state precedence from left to right and initial state specified by M >= 0 initializa-

tions. Each initialization field may have two forms:

variable value or tensor

This first form explicitly initializes a given state variable to an optionally given value

(which defaults to true); the second uses the current state of a tensor to initialize the

state of another. In addition a tensor name (e.g. T(xyz) ) may be followed by a list
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of coordinates in parentheses (), O, or [] to initialize its coordinate dependencies

(e.g. to xyz). Uninitialized state variables take on their default values.
An author may declare certain tensors which can themselves be referenced to

initialize other tensors. Such tensors are templates for other tensors and do not

correspond to variables in Tensoral programs. All turbulence simulations are likely
to have definitions of the velocity and/or scalar fields (for example, called vel0city

and scalar), which can be inherited by other tensors. This allows for simple dec-

larations of derived quantities, for example, the declaration

iso {velocity} U, {rank 2} du, {rank O} p

which might declare an iso velocity field u, its derivative du, and pressure p, a

scalar.

3.2 Assignments

Tensoral assignments assign tensors on the left-hand side of an equals sign = to an

expression on its right-hand side. Assignments can use multiple left-hand sides as

long as they are tensors whose rank is mutually compatible with the right-hand side
rank. Multiple assignments may be performed in parallel (as in Vectoral) with the t_

character joining the multiple assignments. In parallel assignment, right hand sides

of all assignments linked with & characters are evaluated before any assignments

are performed, so that the statement a = b tt b = a, for example, swaps tensors a
and b. Assignments transfer both the state and value of tensors.

In addition tensors may be read from and written to files with assignment no-
tation. File names in Tensora/ are delimited by double quotes "restart10" if

constant or by angle brackets <file> if variable. Files axe read if they occur on the

right-hand side of assignments and are written if they occur on the left-hand side of

assignments. Currently, file operations may not be mixed with other expressions.

This may change in the future.

4. Program syntax
Tensoral statements exist inside of a host language. Tensorai itself was designed

to be minimal: Tensoral supports tensors and operations on them -- no more,

no less. The host language is relied upon for everything else. The semantics of

how programs are organized, say into different flies and different subroutines, how
variables are scoped (global versus local), etc. are all lifted from the host language.
A user is not forced to learn another computer language; instead the user must only

learn how to combine Tensoral and host code.
Back-ends also use host language code to implement operators, tensor references,

declarations, file operations, etc. Thus, eventually a Tensoral program is trans-

formed into a host language program which can then be compiled by the host-

language compiler.

4"1 Tensorai in C

In the current Tensora/prototype, C is used as tile host language. This is referred

as Tensoral in C. For the remainder of this section, we will take C as the host

language to explain how Tensora/codes fits into host code.
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Tensor variables and TensoraJ containing functions may be introduced anywhere

that C variables and functions may be introduced. Tensoral containing functions

have the same syntax as C functions except their declared names are prefixed by

tensor types just as they would appear in a regular tensor declaration. These types

-- with the usual precedence rule -- make up the environment of back-end template
tensors, state variables, coordinates, and operators available to the Tensoral code

in the function. Tensors as arguments to functions and as local (called "automatic"
in C) variables as in C are local to the (} block of their definition. (The user must
be careful to keep distinct names for C and Tensoral variables -- use of the same

C and Tensoral variable names can cause confusing results!)

Tensoral statements may appear wherever C statements may. Since all tensor

variables are specifically introduced as tensors, Tensoral code may be differentiated
from C code. Because of this differentiation Tensoral expressions and statements

may appear anywhere C expressions and statements may. The presence of Tensoral

expressions may change the semantics of C code. Tensoral code may involve array
operations and hence imply iteration over coordinates. This iteration also includes

iteration over the C statement which contains the Tensoral array operation. For

example, the function call printf ("_,g", f(xyz)) ; will print f for all coordinate

values xyz. On the other hand, some C statements such as the looping constructs

for and while are not iterated over Tensoral coordinates; others (switch, if,
function calls, etc.) are iterated.

_.2 Example: the isotropic turbulence back-end

Rogallo's isotropic turbulence simulation and the corresponding ±so Tensora/
back-end represent tensors on a uniform computational mesh of size N 3. Since N

here is desired to be as large as possible, tensors must have their data managed

-- that is, since arrays of size N 3 are potentially too large to fit into a computer's

main memory, all tensors are split up into data plane groups of size MJV 2 or into
groups of lines of size M'N. At one time only M planes or M' lines of a tensor's

data is operated on; the remainder of the tensor is kept on backing store (i.e. disk

or other processors of a multi-computer). Data management code is automatically
generated by the iso back-end.

Derivatives are computed by transforming into wave space; certain products are

formed in physical space. Fourier transforms (whether 1, 2, or 3 dimensional) are

automatically coded when derivatives are taken or when physical space products
are requested. For iao tensors recall that star * implies wave space, juxtaposition
implies physical space, and dot . implies neither. Thus, a * b will transform a

and b to wave space if necessary before multiplying them; a b will transform both

to physical space (as necessary); a.b will simply multiply a and b as is.
iso tensors have special state variables associated with them. The standard

states rank, dep, and dim default to 0, 0 and 3 -- by default, tensors are scalars,

are not dependent on any of the coordinates, and have indices that range from 1 to

3. Tensors can be either in wave space (for state {wave true}) or in physical space
({wave false}). Currently, tensors are represented either in groups of xy planes
(for state {memxy true}) or xz planes ({memxy false}).
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The mesh size and planing factor are given by the state variables mesh (which

corresponds to N above) and plane (which corresponds to M). These state variables

may take on integer values, specifying a constant size mesh and constant planing

factors; for example,

iso {rank I, mesh 32, plane 2, wave} u

declares a 323 wave-space velocity field which is split into groups of data planes of

size 2 x 322. Similarly, mesh and plane may take on values that are the names of

external C variables which contain the mesh size and planing factors at run time;

for example,

iso (rank i, mesh N, plane M} u

declares u to get its run time size and planing from C variables N and M (which had

better exist!). Also, mesh and planing factors can be initialized when a field is read
from a restart file.

The iso back-end also provides template tensors which can be used to initialize

tensors in user's programs. The tensor velocity sets up a velocity field which can
be read from a simulation restart file.

4.3 A complete ezample

Here we illustrate a simple post-processor written in TensorM. Let's suppose --

for the sake of example -- we want to compute pressure statistics for a series of

restart files run1, run2, .... One codes the following TensorM (in C) program in a

file p. tlc:

1 iso main (int argo, char * argv[]) {

2 int f;

3 iso {velocity} u, {u, rank 2} A, {u, rank O} p;

4 iso {} mean, rms;

5 for (f = i; f <argc; f++) {

6 u =<argv[f]>;

7 A_ij = u_i,j ;

8 p =-unlaplacian (A_ij A_ji);

9 mean = ave_xyz (p) ;

I0 rms = sqrt (ave_xyz (p^2) - mean'2);

11 printf ("pressure: min _,g, max _,g, mean _,g, rms _,g\n",

12 min_xyz (p), max_xyz (p), mean, rms);

13 }

14 }

According to C standards main is the function which is called by the operating

system with string arguments argv of size argc. main has been declared with type

iso to indicate that itcontains Tensoral code; iso has been previously introduced

to the compiler as part of itslibraryof back-end types. Line 2 declares a C integer

variable which is used to loop through the restart files assumed to be given on

the command line array argv. Line 3 declares the tensor variables we need. The

velocity field u is initialized using the iso template velocity. A is the velocity
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derivative tensor, declared to be like u but with rank 2. p is the pressure and mean

and rms are both scalars ({rank O, dep 0}) used for statistics. Line 5 loops over

restaxt files; array operations inside this loop are iterated inside the loop (as for

all for and while statements). Line 6 reads in a velocity field from the command

line argument argv If]. Line 7 forms the velocity gradients and line 8 forms the

pressure. Lines 9 and 10 compute simple statistics and lines 11 and 12 print them

out.

To execute this Tensoral program one first compiles it with the command

tl -o p p.tlc

This produces an executable file p (the -o f flag names compiler output). Now p

can be applied to the restart files run1, run2, ...

p runl run2 ...

and will output the desired statistics.
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NAME/TERM

POSTDOCTORAL

FELLOWS

ADAMS, Dr. Nikolaus

10/93-present

CARATI, Dr. Daniele
10/93-9/94

CHOI, Dr. Haecheon
1/94-8/94

GHOSAL, Dr. Sandip
2/92-present

JANSEN, Dr. Kenneth

9/93-present

KALTENBACH,
Dr. Hans-Jakob

9/92-present

KOUMOUTSAKOS, Dr. Petros

8/94-present

LEBOEUF, Dr. Richard L.
9/91-5/94

MANTEL, Dr. Thierry
7/9 3-10/94

RUETSCH, Dr. Gregory
9/93-present

ROSTER

(Ph.D, Theoretical Fluid
Mechanics, 1993, DLR,

G6ttingen)

(Ph.D. Physics, 1991,

University of Belgium)

(Ph.D. Mechanical

Engr., 1992, Stanford)

(Ph.D. Physics, 1992,

Columbia University)

(Ph.D. Mechanical

Engr., 1993, Stanford)

(Ph.D. Atmospheric

Physics, 1992, DLR )

(Ph.D. Aero & Applied
Mathematics, 1992,

CALTECH)

(Ph.D. Mechanical
Engr., 1991, SUNY at
Buffalo)

(Ph.D. Physics, 1993,
University Rouen)

(Ph.D. Applied
Mathematics, 1991,

Brown University)

AREA OF RESEARCH

Boundary layer
interaction with shocks

Large-eddy
simulation/RNG

Large-eddy simulation of

complex flows

Subgrid-scale modeling

Large-eddy simulation of

complex flows

Large-eddy simulation

Numerical simulation via

vortex methods

Experimental study of
turbulent mixing layer

Turbulent combustion

Turbulent combustion
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SADDOUGHI, Dr. Seyed G.

6/91 -present

(Ph.D. Mechanical

Engr., 1989, Univ. of
Melbourne)

Experimental
investigation of local

isotropy in high-
Reynolds-number
turbulence

SAMANIEGO, Dr. Jean-Michel

4/92-12/94

(Ph.D. Combustion,
1992, Ecole Centrale

Paris)

Reacting flows

WANG, Dr. Meng

9/92-present

(Ph.D. Mechanical

Engr., 1989, Univ. of
Colorado)

Aerodynamic noise

RESEARCH ASSOCIATES

CABOT, Dr. William H.

3/88-present

DRESSELHAUS, Dr. Eliot

9/91-present

(Ph.D. Physics, 1983,

University of Rochester)

(Ph.D. Applied
Mathematics, 1991,

Columbia University)

Large-eddy simulation
and convection

Postprocessing and

computer languages

LUND, Dr. Thomas S.

11/90-present

(Ph.D. Aero-Astro,
1987, Stanford)

Large-eddy simulation

SR. VISITING FELLOWS

BILGER, Prof. Robert W.

1/94

University of Sydney Turbulence combustion

BLACKWELDER, Prof. Ron F. University of Southern

9/94-12/94 California

Control of bounded shear

flows

FOSS, Prof. John F. Michigan State 80x120 wind tunnel
11/93 University measurements

GEORGE, Prof. William K.
9/94

SUNY-Buffalo 80x 120 wind tunnel

measurements

SR. RESEARCH FELLOWS

BROADWELL, Dr. James E.

1/94-present

DURBIN, Dr. Paul

1/90-present

Turbulence combustion

Turbulence modeling
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HILL, Dr. D. Christopher
5/92-5/94

JIMENEZ, Prof. Javier
7/94-11/94

ZEMAN, Dr. Otto
3/1/89-9/94

GRADUATE STUDENTS

LOULOU, Patrick
1/94-12/94

TIMSON, Stephen
1O/93- 9/94

Flow control

Small scales in turbulence

Turbulence modeling

DNS of incompressible
axisymmetric flows

LES of a statistically
stationary turbulent free
shear flow
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